Step |
Hyp |
Ref |
Expression |
1 |
|
iundisjcnt.0 |
|- F/_ n B |
2 |
|
iundisjcnt.1 |
|- ( n = k -> A = B ) |
3 |
|
iundisjcnt.2 |
|- ( ph -> ( N = NN \/ N = ( 1 ..^ M ) ) ) |
4 |
|
nfcv |
|- F/_ k A |
5 |
4 1 2
|
iundisjf |
|- U_ n e. NN A = U_ n e. NN ( A \ U_ k e. ( 1 ..^ n ) B ) |
6 |
|
simpr |
|- ( ( ph /\ N = NN ) -> N = NN ) |
7 |
6
|
iuneq1d |
|- ( ( ph /\ N = NN ) -> U_ n e. N A = U_ n e. NN A ) |
8 |
6
|
iuneq1d |
|- ( ( ph /\ N = NN ) -> U_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) = U_ n e. NN ( A \ U_ k e. ( 1 ..^ n ) B ) ) |
9 |
5 7 8
|
3eqtr4a |
|- ( ( ph /\ N = NN ) -> U_ n e. N A = U_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) ) |
10 |
1 2
|
iundisjfi |
|- U_ n e. ( 1 ..^ M ) A = U_ n e. ( 1 ..^ M ) ( A \ U_ k e. ( 1 ..^ n ) B ) |
11 |
|
simpr |
|- ( ( ph /\ N = ( 1 ..^ M ) ) -> N = ( 1 ..^ M ) ) |
12 |
11
|
iuneq1d |
|- ( ( ph /\ N = ( 1 ..^ M ) ) -> U_ n e. N A = U_ n e. ( 1 ..^ M ) A ) |
13 |
11
|
iuneq1d |
|- ( ( ph /\ N = ( 1 ..^ M ) ) -> U_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) = U_ n e. ( 1 ..^ M ) ( A \ U_ k e. ( 1 ..^ n ) B ) ) |
14 |
10 12 13
|
3eqtr4a |
|- ( ( ph /\ N = ( 1 ..^ M ) ) -> U_ n e. N A = U_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) ) |
15 |
9 14 3
|
mpjaodan |
|- ( ph -> U_ n e. N A = U_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) ) |