Metamath Proof Explorer


Theorem iundisjcnt

Description: Rewrite a countable union as a disjoint union. (Contributed by Thierry Arnoux, 16-Feb-2017)

Ref Expression
Hypotheses iundisjcnt.0
|- F/_ n B
iundisjcnt.1
|- ( n = k -> A = B )
iundisjcnt.2
|- ( ph -> ( N = NN \/ N = ( 1 ..^ M ) ) )
Assertion iundisjcnt
|- ( ph -> U_ n e. N A = U_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) )

Proof

Step Hyp Ref Expression
1 iundisjcnt.0
 |-  F/_ n B
2 iundisjcnt.1
 |-  ( n = k -> A = B )
3 iundisjcnt.2
 |-  ( ph -> ( N = NN \/ N = ( 1 ..^ M ) ) )
4 nfcv
 |-  F/_ k A
5 4 1 2 iundisjf
 |-  U_ n e. NN A = U_ n e. NN ( A \ U_ k e. ( 1 ..^ n ) B )
6 simpr
 |-  ( ( ph /\ N = NN ) -> N = NN )
7 6 iuneq1d
 |-  ( ( ph /\ N = NN ) -> U_ n e. N A = U_ n e. NN A )
8 6 iuneq1d
 |-  ( ( ph /\ N = NN ) -> U_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) = U_ n e. NN ( A \ U_ k e. ( 1 ..^ n ) B ) )
9 5 7 8 3eqtr4a
 |-  ( ( ph /\ N = NN ) -> U_ n e. N A = U_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) )
10 1 2 iundisjfi
 |-  U_ n e. ( 1 ..^ M ) A = U_ n e. ( 1 ..^ M ) ( A \ U_ k e. ( 1 ..^ n ) B )
11 simpr
 |-  ( ( ph /\ N = ( 1 ..^ M ) ) -> N = ( 1 ..^ M ) )
12 11 iuneq1d
 |-  ( ( ph /\ N = ( 1 ..^ M ) ) -> U_ n e. N A = U_ n e. ( 1 ..^ M ) A )
13 11 iuneq1d
 |-  ( ( ph /\ N = ( 1 ..^ M ) ) -> U_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) = U_ n e. ( 1 ..^ M ) ( A \ U_ k e. ( 1 ..^ n ) B ) )
14 10 12 13 3eqtr4a
 |-  ( ( ph /\ N = ( 1 ..^ M ) ) -> U_ n e. N A = U_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) )
15 9 14 3 mpjaodan
 |-  ( ph -> U_ n e. N A = U_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) )