| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iundisj3.0 |
⊢ Ⅎ 𝑛 𝐵 |
| 2 |
|
iundisj3.1 |
⊢ ( 𝑛 = 𝑘 → 𝐴 = 𝐵 ) |
| 3 |
|
ssrab2 |
⊢ { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } ⊆ ( 1 ..^ 𝑁 ) |
| 4 |
|
fzossnn |
⊢ ( 1 ..^ 𝑁 ) ⊆ ℕ |
| 5 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 6 |
4 5
|
sseqtri |
⊢ ( 1 ..^ 𝑁 ) ⊆ ( ℤ≥ ‘ 1 ) |
| 7 |
3 6
|
sstri |
⊢ { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } ⊆ ( ℤ≥ ‘ 1 ) |
| 8 |
|
rabn0 |
⊢ ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } ≠ ∅ ↔ ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 ) |
| 9 |
8
|
biimpri |
⊢ ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 → { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } ≠ ∅ ) |
| 10 |
|
infssuzcl |
⊢ ( ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } ⊆ ( ℤ≥ ‘ 1 ) ∧ { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } ≠ ∅ ) → inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } ) |
| 11 |
7 9 10
|
sylancr |
⊢ ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 → inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } ) |
| 12 |
3 11
|
sselid |
⊢ ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 → inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ( 1 ..^ 𝑁 ) ) |
| 13 |
|
nfrab1 |
⊢ Ⅎ 𝑛 { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑛 ℝ |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑛 < |
| 16 |
13 14 15
|
nfinf |
⊢ Ⅎ 𝑛 inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 1 ..^ 𝑁 ) |
| 18 |
16
|
nfcsb1 |
⊢ Ⅎ 𝑛 ⦋ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 |
| 19 |
18
|
nfcri |
⊢ Ⅎ 𝑛 𝑥 ∈ ⦋ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 |
| 20 |
|
csbeq1a |
⊢ ( 𝑛 = inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) → 𝐴 = ⦋ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ) |
| 21 |
20
|
eleq2d |
⊢ ( 𝑛 = inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ⦋ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ) ) |
| 22 |
16 17 19 21
|
elrabf |
⊢ ( inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } ↔ ( inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 ∈ ⦋ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ) ) |
| 23 |
11 22
|
sylib |
⊢ ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 → ( inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 ∈ ⦋ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ) ) |
| 24 |
23
|
simprd |
⊢ ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 → 𝑥 ∈ ⦋ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ) |
| 25 |
3 4
|
sstri |
⊢ { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } ⊆ ℕ |
| 26 |
|
nnssre |
⊢ ℕ ⊆ ℝ |
| 27 |
25 26
|
sstri |
⊢ { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } ⊆ ℝ |
| 28 |
27 11
|
sselid |
⊢ ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 → inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
| 29 |
28
|
ltnrd |
⊢ ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 → ¬ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) < inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
| 30 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 ↔ ∃ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝑥 ∈ 𝐵 ) |
| 31 |
28
|
ad2antrr |
⊢ ( ( ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
| 32 |
|
elfzouz2 |
⊢ ( inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ( 1 ..^ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) |
| 33 |
|
fzoss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) → ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ⊆ ( 1 ..^ 𝑁 ) ) |
| 34 |
12 32 33
|
3syl |
⊢ ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 → ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ⊆ ( 1 ..^ 𝑁 ) ) |
| 35 |
34
|
sselda |
⊢ ( ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) → 𝑘 ∈ ( 1 ..^ 𝑁 ) ) |
| 36 |
35
|
adantr |
⊢ ( ( ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑘 ∈ ( 1 ..^ 𝑁 ) ) |
| 37 |
4 36
|
sselid |
⊢ ( ( ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑘 ∈ ℕ ) |
| 38 |
37
|
nnred |
⊢ ( ( ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑘 ∈ ℝ ) |
| 39 |
|
simpr |
⊢ ( ( ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 40 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑘 |
| 41 |
1
|
nfcri |
⊢ Ⅎ 𝑛 𝑥 ∈ 𝐵 |
| 42 |
2
|
eleq2d |
⊢ ( 𝑛 = 𝑘 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 43 |
40 17 41 42
|
elrabf |
⊢ ( 𝑘 ∈ { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } ↔ ( 𝑘 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 ∈ 𝐵 ) ) |
| 44 |
36 39 43
|
sylanbrc |
⊢ ( ( ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑘 ∈ { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } ) |
| 45 |
|
infssuzle |
⊢ ( ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑘 ∈ { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } ) → inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ≤ 𝑘 ) |
| 46 |
7 44 45
|
sylancr |
⊢ ( ( ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ≤ 𝑘 ) |
| 47 |
|
elfzolt2 |
⊢ ( 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) → 𝑘 < inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
| 48 |
47
|
ad2antlr |
⊢ ( ( ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑘 < inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
| 49 |
31 38 31 46 48
|
lelttrd |
⊢ ( ( ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) < inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
| 50 |
49
|
rexlimdva2 |
⊢ ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 → ( ∃ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝑥 ∈ 𝐵 → inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) < inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) |
| 51 |
30 50
|
biimtrid |
⊢ ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 → inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) < inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) |
| 52 |
29 51
|
mtod |
⊢ ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 ) |
| 53 |
24 52
|
eldifd |
⊢ ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 → 𝑥 ∈ ( ⦋ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 ) ) |
| 54 |
|
csbeq1 |
⊢ ( 𝑚 = inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 = ⦋ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ) |
| 55 |
|
oveq2 |
⊢ ( 𝑚 = inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) → ( 1 ..^ 𝑚 ) = ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) |
| 56 |
55
|
iuneq1d |
⊢ ( 𝑚 = inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) → ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 = ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 ) |
| 57 |
54 56
|
difeq12d |
⊢ ( 𝑚 = inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) → ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) = ( ⦋ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 ) ) |
| 58 |
57
|
eleq2d |
⊢ ( 𝑚 = inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) → ( 𝑥 ∈ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) ↔ 𝑥 ∈ ( ⦋ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 ) ) ) |
| 59 |
58
|
rspcev |
⊢ ( ( inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 ∈ ( ⦋ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ( 1 ..^ 𝑁 ) ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 ) ) → ∃ 𝑚 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) ) |
| 60 |
12 53 59
|
syl2anc |
⊢ ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 → ∃ 𝑚 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) ) |
| 61 |
|
nfv |
⊢ Ⅎ 𝑚 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) |
| 62 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 |
| 63 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 1 ..^ 𝑚 ) |
| 64 |
63 1
|
nfiun |
⊢ Ⅎ 𝑛 ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 |
| 65 |
62 64
|
nfdif |
⊢ Ⅎ 𝑛 ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) |
| 66 |
65
|
nfcri |
⊢ Ⅎ 𝑛 𝑥 ∈ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) |
| 67 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑚 → 𝐴 = ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
| 68 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 1 ..^ 𝑛 ) = ( 1 ..^ 𝑚 ) ) |
| 69 |
68
|
iuneq1d |
⊢ ( 𝑛 = 𝑚 → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 = ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) |
| 70 |
67 69
|
difeq12d |
⊢ ( 𝑛 = 𝑚 → ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) ) |
| 71 |
70
|
eleq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ↔ 𝑥 ∈ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) ) ) |
| 72 |
61 66 71
|
cbvrexw |
⊢ ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ↔ ∃ 𝑚 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) ) |
| 73 |
60 72
|
sylibr |
⊢ ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 → ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
| 74 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) → 𝑥 ∈ 𝐴 ) |
| 75 |
74
|
reximi |
⊢ ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) → ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 ) |
| 76 |
73 75
|
impbii |
⊢ ( ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 ↔ ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
| 77 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝐴 ↔ ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ 𝐴 ) |
| 78 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 1 ..^ 𝑁 ) ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ↔ ∃ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
| 79 |
76 77 78
|
3bitr4i |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝐴 ↔ 𝑥 ∈ ∪ 𝑛 ∈ ( 1 ..^ 𝑁 ) ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
| 80 |
79
|
eqriv |
⊢ ∪ 𝑛 ∈ ( 1 ..^ 𝑁 ) 𝐴 = ∪ 𝑛 ∈ ( 1 ..^ 𝑁 ) ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) |