| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iundisj2fi.0 |
|
| 2 |
|
iundisj2fi.1 |
|
| 3 |
|
tru |
|
| 4 |
|
eqeq12 |
|
| 5 |
|
csbeq1 |
|
| 6 |
|
csbeq1 |
|
| 7 |
5 6
|
ineqan12d |
|
| 8 |
7
|
eqeq1d |
|
| 9 |
4 8
|
orbi12d |
|
| 10 |
|
eqeq12 |
|
| 11 |
|
equcom |
|
| 12 |
10 11
|
bitrdi |
|
| 13 |
|
csbeq1 |
|
| 14 |
|
csbeq1 |
|
| 15 |
13 14
|
ineqan12d |
|
| 16 |
|
incom |
|
| 17 |
15 16
|
eqtrdi |
|
| 18 |
17
|
eqeq1d |
|
| 19 |
12 18
|
orbi12d |
|
| 20 |
|
fzossnn |
|
| 21 |
|
nnssre |
|
| 22 |
20 21
|
sstri |
|
| 23 |
22
|
a1i |
|
| 24 |
|
biidd |
|
| 25 |
|
nesym |
|
| 26 |
22
|
sseli |
|
| 27 |
22
|
sseli |
|
| 28 |
|
id |
|
| 29 |
|
leltne |
|
| 30 |
26 27 28 29
|
syl3an |
|
| 31 |
|
vex |
|
| 32 |
|
nfcsb1v |
|
| 33 |
|
nfcv |
|
| 34 |
33 1
|
nfiun |
|
| 35 |
32 34
|
nfdif |
|
| 36 |
|
csbeq1a |
|
| 37 |
|
oveq2 |
|
| 38 |
37
|
iuneq1d |
|
| 39 |
36 38
|
difeq12d |
|
| 40 |
31 35 39
|
csbief |
|
| 41 |
|
vex |
|
| 42 |
|
nfcsb1v |
|
| 43 |
|
nfcv |
|
| 44 |
43 1
|
nfiun |
|
| 45 |
42 44
|
nfdif |
|
| 46 |
|
csbeq1a |
|
| 47 |
|
oveq2 |
|
| 48 |
47
|
iuneq1d |
|
| 49 |
46 48
|
difeq12d |
|
| 50 |
41 45 49
|
csbief |
|
| 51 |
40 50
|
ineq12i |
|
| 52 |
|
simp1 |
|
| 53 |
20 52
|
sselid |
|
| 54 |
|
nnuz |
|
| 55 |
53 54
|
eleqtrdi |
|
| 56 |
|
simp2 |
|
| 57 |
20 56
|
sselid |
|
| 58 |
57
|
nnzd |
|
| 59 |
|
simp3 |
|
| 60 |
|
elfzo2 |
|
| 61 |
55 58 59 60
|
syl3anbrc |
|
| 62 |
|
nfcv |
|
| 63 |
62 1 2
|
csbhypf |
|
| 64 |
63
|
equcoms |
|
| 65 |
64
|
eqcomd |
|
| 66 |
65
|
ssiun2s |
|
| 67 |
61 66
|
syl |
|
| 68 |
67
|
ssdifssd |
|
| 69 |
68
|
ssrind |
|
| 70 |
51 69
|
eqsstrid |
|
| 71 |
|
disjdif |
|
| 72 |
|
sseq0 |
|
| 73 |
70 71 72
|
sylancl |
|
| 74 |
73
|
3expia |
|
| 75 |
74
|
3adant3 |
|
| 76 |
30 75
|
sylbird |
|
| 77 |
25 76
|
biimtrrid |
|
| 78 |
77
|
orrd |
|
| 79 |
78
|
adantl |
|
| 80 |
9 19 23 24 79
|
wlogle |
|
| 81 |
3 80
|
mpan |
|
| 82 |
81
|
rgen2 |
|
| 83 |
|
disjors |
|
| 84 |
82 83
|
mpbir |
|