Step |
Hyp |
Ref |
Expression |
1 |
|
iundisj.1 |
⊢ ( 𝑛 = 𝑘 → 𝐴 = 𝐵 ) |
2 |
|
tru |
⊢ ⊤ |
3 |
|
eqeq12 |
⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( 𝑎 = 𝑏 ↔ 𝑥 = 𝑦 ) ) |
4 |
|
csbeq1 |
⊢ ( 𝑎 = 𝑥 → ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
5 |
|
csbeq1 |
⊢ ( 𝑏 = 𝑦 → ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
6 |
4 5
|
ineqan12d |
⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ) |
7 |
6
|
eqeq1d |
⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ↔ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
8 |
3 7
|
orbi12d |
⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( ( 𝑎 = 𝑏 ∨ ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ↔ ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) ) |
9 |
|
eqeq12 |
⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( 𝑎 = 𝑏 ↔ 𝑦 = 𝑥 ) ) |
10 |
|
equcom |
⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) |
11 |
9 10
|
bitrdi |
⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( 𝑎 = 𝑏 ↔ 𝑥 = 𝑦 ) ) |
12 |
|
csbeq1 |
⊢ ( 𝑎 = 𝑦 → ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
13 |
|
csbeq1 |
⊢ ( 𝑏 = 𝑥 → ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
14 |
12 13
|
ineqan12d |
⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ) |
15 |
|
incom |
⊢ ( ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
16 |
14 15
|
eqtrdi |
⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ) |
17 |
16
|
eqeq1d |
⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ↔ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
18 |
11 17
|
orbi12d |
⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( ( 𝑎 = 𝑏 ∨ ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ↔ ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) ) |
19 |
|
nnssre |
⊢ ℕ ⊆ ℝ |
20 |
19
|
a1i |
⊢ ( ⊤ → ℕ ⊆ ℝ ) |
21 |
|
biidd |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) → ( ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ↔ ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) ) |
22 |
|
nesym |
⊢ ( 𝑦 ≠ 𝑥 ↔ ¬ 𝑥 = 𝑦 ) |
23 |
|
nnre |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ ) |
24 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
25 |
|
id |
⊢ ( 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) |
26 |
|
leltne |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ≤ 𝑦 ) → ( 𝑥 < 𝑦 ↔ 𝑦 ≠ 𝑥 ) ) |
27 |
23 24 25 26
|
syl3an |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 ≤ 𝑦 ) → ( 𝑥 < 𝑦 ↔ 𝑦 ≠ 𝑥 ) ) |
28 |
|
vex |
⊢ 𝑥 ∈ V |
29 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑥 / 𝑛 ⦌ 𝐴 |
30 |
|
nfcv |
⊢ Ⅎ 𝑛 ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 |
31 |
29 30
|
nfdif |
⊢ Ⅎ 𝑛 ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) |
32 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑥 → 𝐴 = ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ) |
33 |
|
oveq2 |
⊢ ( 𝑛 = 𝑥 → ( 1 ..^ 𝑛 ) = ( 1 ..^ 𝑥 ) ) |
34 |
33
|
iuneq1d |
⊢ ( 𝑛 = 𝑥 → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 = ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) |
35 |
32 34
|
difeq12d |
⊢ ( 𝑛 = 𝑥 → ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) ) |
36 |
28 31 35
|
csbief |
⊢ ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) |
37 |
|
vex |
⊢ 𝑦 ∈ V |
38 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑦 / 𝑛 ⦌ 𝐴 |
39 |
|
nfcv |
⊢ Ⅎ 𝑛 ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 |
40 |
38 39
|
nfdif |
⊢ Ⅎ 𝑛 ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
41 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑦 → 𝐴 = ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ) |
42 |
|
oveq2 |
⊢ ( 𝑛 = 𝑦 → ( 1 ..^ 𝑛 ) = ( 1 ..^ 𝑦 ) ) |
43 |
42
|
iuneq1d |
⊢ ( 𝑛 = 𝑦 → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 = ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
44 |
41 43
|
difeq12d |
⊢ ( 𝑛 = 𝑦 → ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) |
45 |
37 40 44
|
csbief |
⊢ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
46 |
36 45
|
ineq12i |
⊢ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) |
47 |
|
simp1 |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℕ ) |
48 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
49 |
47 48
|
eleqtrdi |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) |
50 |
|
simp2 |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℕ ) |
51 |
50
|
nnzd |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℤ ) |
52 |
|
simp3 |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑥 < 𝑦 ) |
53 |
|
elfzo2 |
⊢ ( 𝑥 ∈ ( 1 ..^ 𝑦 ) ↔ ( 𝑥 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑦 ∈ ℤ ∧ 𝑥 < 𝑦 ) ) |
54 |
49 51 52 53
|
syl3anbrc |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( 1 ..^ 𝑦 ) ) |
55 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑘 |
56 |
|
nfcv |
⊢ Ⅎ 𝑛 𝐵 |
57 |
55 56 1
|
csbhypf |
⊢ ( 𝑥 = 𝑘 → ⦋ 𝑥 / 𝑛 ⦌ 𝐴 = 𝐵 ) |
58 |
57
|
equcoms |
⊢ ( 𝑘 = 𝑥 → ⦋ 𝑥 / 𝑛 ⦌ 𝐴 = 𝐵 ) |
59 |
58
|
eqcomd |
⊢ ( 𝑘 = 𝑥 → 𝐵 = ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ) |
60 |
59
|
ssiun2s |
⊢ ( 𝑥 ∈ ( 1 ..^ 𝑦 ) → ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ⊆ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
61 |
54 60
|
syl |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ⊆ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
62 |
61
|
ssdifssd |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) ⊆ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
63 |
62
|
ssrind |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ( ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) ⊆ ( ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) ) |
64 |
46 63
|
eqsstrid |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ⊆ ( ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) ) |
65 |
|
disjdif |
⊢ ( ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) = ∅ |
66 |
|
sseq0 |
⊢ ( ( ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ⊆ ( ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) ∧ ( ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) = ∅ ) → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) |
67 |
64 65 66
|
sylancl |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) |
68 |
67
|
3expia |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 < 𝑦 → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
69 |
68
|
3adant3 |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 ≤ 𝑦 ) → ( 𝑥 < 𝑦 → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
70 |
27 69
|
sylbird |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 ≤ 𝑦 ) → ( 𝑦 ≠ 𝑥 → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
71 |
22 70
|
syl5bir |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 ≤ 𝑦 ) → ( ¬ 𝑥 = 𝑦 → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
72 |
71
|
orrd |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 ≤ 𝑦 ) → ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
73 |
72
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 ≤ 𝑦 ) ) → ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
74 |
8 18 20 21 73
|
wlogle |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
75 |
2 74
|
mpan |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
76 |
75
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) |
77 |
|
disjors |
⊢ ( Disj 𝑛 ∈ ℕ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ↔ ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
78 |
76 77
|
mpbir |
⊢ Disj 𝑛 ∈ ℕ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) |