| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iundisj.1 |
⊢ ( 𝑛 = 𝑘 → 𝐴 = 𝐵 ) |
| 2 |
|
tru |
⊢ ⊤ |
| 3 |
|
eqeq12 |
⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( 𝑎 = 𝑏 ↔ 𝑥 = 𝑦 ) ) |
| 4 |
|
csbeq1 |
⊢ ( 𝑎 = 𝑥 → ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
| 5 |
|
csbeq1 |
⊢ ( 𝑏 = 𝑦 → ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
| 6 |
4 5
|
ineqan12d |
⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ) |
| 7 |
6
|
eqeq1d |
⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ↔ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
| 8 |
3 7
|
orbi12d |
⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( ( 𝑎 = 𝑏 ∨ ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ↔ ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) ) |
| 9 |
|
eqeq12 |
⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( 𝑎 = 𝑏 ↔ 𝑦 = 𝑥 ) ) |
| 10 |
|
equcom |
⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) |
| 11 |
9 10
|
bitrdi |
⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( 𝑎 = 𝑏 ↔ 𝑥 = 𝑦 ) ) |
| 12 |
|
csbeq1 |
⊢ ( 𝑎 = 𝑦 → ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
| 13 |
|
csbeq1 |
⊢ ( 𝑏 = 𝑥 → ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
| 14 |
12 13
|
ineqan12d |
⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ) |
| 15 |
|
incom |
⊢ ( ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
| 16 |
14 15
|
eqtrdi |
⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ) |
| 17 |
16
|
eqeq1d |
⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ↔ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
| 18 |
11 17
|
orbi12d |
⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( ( 𝑎 = 𝑏 ∨ ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ↔ ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) ) |
| 19 |
|
nnssre |
⊢ ℕ ⊆ ℝ |
| 20 |
19
|
a1i |
⊢ ( ⊤ → ℕ ⊆ ℝ ) |
| 21 |
|
biidd |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) → ( ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ↔ ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) ) |
| 22 |
|
nesym |
⊢ ( 𝑦 ≠ 𝑥 ↔ ¬ 𝑥 = 𝑦 ) |
| 23 |
|
nnre |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ ) |
| 24 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
| 25 |
|
id |
⊢ ( 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) |
| 26 |
|
leltne |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ≤ 𝑦 ) → ( 𝑥 < 𝑦 ↔ 𝑦 ≠ 𝑥 ) ) |
| 27 |
23 24 25 26
|
syl3an |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 ≤ 𝑦 ) → ( 𝑥 < 𝑦 ↔ 𝑦 ≠ 𝑥 ) ) |
| 28 |
|
vex |
⊢ 𝑥 ∈ V |
| 29 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑥 / 𝑛 ⦌ 𝐴 |
| 30 |
|
nfcv |
⊢ Ⅎ 𝑛 ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 |
| 31 |
29 30
|
nfdif |
⊢ Ⅎ 𝑛 ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) |
| 32 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑥 → 𝐴 = ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ) |
| 33 |
|
oveq2 |
⊢ ( 𝑛 = 𝑥 → ( 1 ..^ 𝑛 ) = ( 1 ..^ 𝑥 ) ) |
| 34 |
33
|
iuneq1d |
⊢ ( 𝑛 = 𝑥 → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 = ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) |
| 35 |
32 34
|
difeq12d |
⊢ ( 𝑛 = 𝑥 → ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) ) |
| 36 |
28 31 35
|
csbief |
⊢ ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) |
| 37 |
|
vex |
⊢ 𝑦 ∈ V |
| 38 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑦 / 𝑛 ⦌ 𝐴 |
| 39 |
|
nfcv |
⊢ Ⅎ 𝑛 ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 |
| 40 |
38 39
|
nfdif |
⊢ Ⅎ 𝑛 ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
| 41 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑦 → 𝐴 = ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ) |
| 42 |
|
oveq2 |
⊢ ( 𝑛 = 𝑦 → ( 1 ..^ 𝑛 ) = ( 1 ..^ 𝑦 ) ) |
| 43 |
42
|
iuneq1d |
⊢ ( 𝑛 = 𝑦 → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 = ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
| 44 |
41 43
|
difeq12d |
⊢ ( 𝑛 = 𝑦 → ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) |
| 45 |
37 40 44
|
csbief |
⊢ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
| 46 |
36 45
|
ineq12i |
⊢ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) |
| 47 |
|
simp1 |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℕ ) |
| 48 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 49 |
47 48
|
eleqtrdi |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) |
| 50 |
|
simp2 |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℕ ) |
| 51 |
50
|
nnzd |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℤ ) |
| 52 |
|
simp3 |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑥 < 𝑦 ) |
| 53 |
|
elfzo2 |
⊢ ( 𝑥 ∈ ( 1 ..^ 𝑦 ) ↔ ( 𝑥 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑦 ∈ ℤ ∧ 𝑥 < 𝑦 ) ) |
| 54 |
49 51 52 53
|
syl3anbrc |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( 1 ..^ 𝑦 ) ) |
| 55 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑘 |
| 56 |
|
nfcv |
⊢ Ⅎ 𝑛 𝐵 |
| 57 |
55 56 1
|
csbhypf |
⊢ ( 𝑥 = 𝑘 → ⦋ 𝑥 / 𝑛 ⦌ 𝐴 = 𝐵 ) |
| 58 |
57
|
equcoms |
⊢ ( 𝑘 = 𝑥 → ⦋ 𝑥 / 𝑛 ⦌ 𝐴 = 𝐵 ) |
| 59 |
58
|
eqcomd |
⊢ ( 𝑘 = 𝑥 → 𝐵 = ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ) |
| 60 |
59
|
ssiun2s |
⊢ ( 𝑥 ∈ ( 1 ..^ 𝑦 ) → ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ⊆ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
| 61 |
54 60
|
syl |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ⊆ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
| 62 |
61
|
ssdifssd |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) ⊆ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
| 63 |
62
|
ssrind |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ( ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) ⊆ ( ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) ) |
| 64 |
46 63
|
eqsstrid |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ⊆ ( ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) ) |
| 65 |
|
disjdif |
⊢ ( ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) = ∅ |
| 66 |
|
sseq0 |
⊢ ( ( ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ⊆ ( ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) ∧ ( ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) = ∅ ) → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) |
| 67 |
64 65 66
|
sylancl |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) |
| 68 |
67
|
3expia |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 < 𝑦 → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
| 69 |
68
|
3adant3 |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 ≤ 𝑦 ) → ( 𝑥 < 𝑦 → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
| 70 |
27 69
|
sylbird |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 ≤ 𝑦 ) → ( 𝑦 ≠ 𝑥 → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
| 71 |
22 70
|
biimtrrid |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 ≤ 𝑦 ) → ( ¬ 𝑥 = 𝑦 → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
| 72 |
71
|
orrd |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 ≤ 𝑦 ) → ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
| 73 |
72
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 ≤ 𝑦 ) ) → ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
| 74 |
8 18 20 21 73
|
wlogle |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
| 75 |
2 74
|
mpan |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
| 76 |
75
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) |
| 77 |
|
disjors |
⊢ ( Disj 𝑛 ∈ ℕ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ↔ ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
| 78 |
76 77
|
mpbir |
⊢ Disj 𝑛 ∈ ℕ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) |