| Step |
Hyp |
Ref |
Expression |
| 1 |
|
voliunlem.3 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ dom vol ) |
| 2 |
|
voliunlem.5 |
⊢ ( 𝜑 → Disj 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ) |
| 3 |
|
voliunlem1.6 |
⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 4 |
|
voliunlem1.7 |
⊢ ( 𝜑 → 𝐸 ⊆ ℝ ) |
| 5 |
|
voliunlem1.8 |
⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) |
| 6 |
|
difss |
⊢ ( 𝐸 ∖ ∪ ran 𝐹 ) ⊆ 𝐸 |
| 7 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ 𝐸 ) ∈ ℝ ) |
| 8 |
|
ovolsscl |
⊢ ( ( ( 𝐸 ∖ ∪ ran 𝐹 ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ∈ ℝ ) |
| 9 |
6 4 7 8
|
mp3an2ani |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ∈ ℝ ) |
| 10 |
|
difss |
⊢ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐸 |
| 11 |
|
ovolsscl |
⊢ ( ( ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 12 |
10 4 7 11
|
mp3an2ani |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 13 |
|
inss1 |
⊢ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐸 |
| 14 |
|
ovolsscl |
⊢ ( ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 15 |
13 4 7 14
|
mp3an2ani |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 16 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... 𝑘 ) → 𝑛 ∈ ℕ ) |
| 17 |
1
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℕ ) |
| 18 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ran 𝐹 ) |
| 19 |
17 18
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ran 𝐹 ) |
| 20 |
|
elssuni |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ran 𝐹 → ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
| 21 |
19 20
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
| 22 |
16 21
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
| 23 |
22
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∀ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
| 25 |
|
iunss |
⊢ ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
| 26 |
24 25
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
| 27 |
26
|
sscond |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐸 ∖ ∪ ran 𝐹 ) ⊆ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) |
| 28 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐸 ⊆ ℝ ) |
| 29 |
10 28
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ⊆ ℝ ) |
| 30 |
|
ovolss |
⊢ ( ( ( 𝐸 ∖ ∪ ran 𝐹 ) ⊆ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ∧ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ⊆ ℝ ) → ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ≤ ( vol* ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 31 |
27 29 30
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ≤ ( vol* ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 32 |
9 12 15 31
|
leadd2dd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ) ≤ ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 33 |
|
oveq2 |
⊢ ( 𝑧 = 1 → ( 1 ... 𝑧 ) = ( 1 ... 1 ) ) |
| 34 |
33
|
iuneq1d |
⊢ ( 𝑧 = 1 → ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) |
| 35 |
34
|
eleq1d |
⊢ ( 𝑧 = 1 → ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ↔ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) ) |
| 36 |
34
|
ineq2d |
⊢ ( 𝑧 = 1 → ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) |
| 37 |
36
|
fveq2d |
⊢ ( 𝑧 = 1 → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 38 |
|
fveq2 |
⊢ ( 𝑧 = 1 → ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) |
| 39 |
37 38
|
eqeq12d |
⊢ ( 𝑧 = 1 → ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ↔ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) ) |
| 40 |
35 39
|
anbi12d |
⊢ ( 𝑧 = 1 → ( ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ) ↔ ( ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) ) ) |
| 41 |
40
|
imbi2d |
⊢ ( 𝑧 = 1 → ( ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) ) ) ) |
| 42 |
|
oveq2 |
⊢ ( 𝑧 = 𝑘 → ( 1 ... 𝑧 ) = ( 1 ... 𝑘 ) ) |
| 43 |
42
|
iuneq1d |
⊢ ( 𝑧 = 𝑘 → ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) |
| 44 |
43
|
eleq1d |
⊢ ( 𝑧 = 𝑘 → ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ↔ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) ) |
| 45 |
43
|
ineq2d |
⊢ ( 𝑧 = 𝑘 → ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) |
| 46 |
45
|
fveq2d |
⊢ ( 𝑧 = 𝑘 → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 47 |
|
fveq2 |
⊢ ( 𝑧 = 𝑘 → ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) |
| 48 |
46 47
|
eqeq12d |
⊢ ( 𝑧 = 𝑘 → ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ↔ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) ) |
| 49 |
44 48
|
anbi12d |
⊢ ( 𝑧 = 𝑘 → ( ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ) ↔ ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) ) ) |
| 50 |
49
|
imbi2d |
⊢ ( 𝑧 = 𝑘 → ( ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) ) ) ) |
| 51 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( 1 ... 𝑧 ) = ( 1 ... ( 𝑘 + 1 ) ) ) |
| 52 |
51
|
iuneq1d |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) |
| 53 |
52
|
eleq1d |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ↔ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) ) |
| 54 |
52
|
ineq2d |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) |
| 55 |
54
|
fveq2d |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 56 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) |
| 57 |
55 56
|
eqeq12d |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ↔ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 58 |
53 57
|
anbi12d |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ) ↔ ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 59 |
58
|
imbi2d |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 60 |
|
1z |
⊢ 1 ∈ ℤ |
| 61 |
|
fzsn |
⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) |
| 62 |
|
iuneq1 |
⊢ ( ( 1 ... 1 ) = { 1 } → ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ { 1 } ( 𝐹 ‘ 𝑛 ) ) |
| 63 |
60 61 62
|
mp2b |
⊢ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ { 1 } ( 𝐹 ‘ 𝑛 ) |
| 64 |
|
1ex |
⊢ 1 ∈ V |
| 65 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) ) |
| 66 |
64 65
|
iunxsn |
⊢ ∪ 𝑛 ∈ { 1 } ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) |
| 67 |
63 66
|
eqtri |
⊢ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) |
| 68 |
|
1nn |
⊢ 1 ∈ ℕ |
| 69 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℕ ⟶ dom vol ∧ 1 ∈ ℕ ) → ( 𝐹 ‘ 1 ) ∈ dom vol ) |
| 70 |
1 68 69
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ dom vol ) |
| 71 |
67 70
|
eqeltrid |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) |
| 72 |
65
|
ineq2d |
⊢ ( 𝑛 = 1 → ( 𝐸 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ( 𝐹 ‘ 1 ) ) ) |
| 73 |
72
|
fveq2d |
⊢ ( 𝑛 = 1 → ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 1 ) ) ) ) |
| 74 |
|
fvex |
⊢ ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 1 ) ) ) ∈ V |
| 75 |
73 3 74
|
fvmpt |
⊢ ( 1 ∈ ℕ → ( 𝐻 ‘ 1 ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 1 ) ) ) ) |
| 76 |
68 75
|
ax-mp |
⊢ ( 𝐻 ‘ 1 ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 1 ) ) ) |
| 77 |
|
seq1 |
⊢ ( 1 ∈ ℤ → ( seq 1 ( + , 𝐻 ) ‘ 1 ) = ( 𝐻 ‘ 1 ) ) |
| 78 |
60 77
|
ax-mp |
⊢ ( seq 1 ( + , 𝐻 ) ‘ 1 ) = ( 𝐻 ‘ 1 ) |
| 79 |
67
|
ineq2i |
⊢ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ( 𝐹 ‘ 1 ) ) |
| 80 |
79
|
fveq2i |
⊢ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 1 ) ) ) |
| 81 |
76 78 80
|
3eqtr4ri |
⊢ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) |
| 82 |
71 81
|
jctir |
⊢ ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) ) |
| 83 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
| 84 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℕ ⟶ dom vol ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ dom vol ) |
| 85 |
1 83 84
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ dom vol ) |
| 86 |
|
unmbl |
⊢ ( ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ dom vol ) → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ dom vol ) |
| 87 |
86
|
ex |
⊢ ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ dom vol → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ dom vol ) ) |
| 88 |
85 87
|
syl5com |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ dom vol ) ) |
| 89 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
| 90 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 91 |
89 90
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 92 |
|
fzsuc |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( 1 ... ( 𝑘 + 1 ) ) = ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ) |
| 93 |
|
iuneq1 |
⊢ ( ( 1 ... ( 𝑘 + 1 ) ) = ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) → ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ( 𝐹 ‘ 𝑛 ) ) |
| 94 |
91 92 93
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ( 𝐹 ‘ 𝑛 ) ) |
| 95 |
|
iunxun |
⊢ ∪ 𝑛 ∈ ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ( 𝐹 ‘ 𝑛 ) = ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ∪ 𝑛 ∈ { ( 𝑘 + 1 ) } ( 𝐹 ‘ 𝑛 ) ) |
| 96 |
|
ovex |
⊢ ( 𝑘 + 1 ) ∈ V |
| 97 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 98 |
96 97
|
iunxsn |
⊢ ∪ 𝑛 ∈ { ( 𝑘 + 1 ) } ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) |
| 99 |
98
|
uneq2i |
⊢ ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ∪ 𝑛 ∈ { ( 𝑘 + 1 ) } ( 𝐹 ‘ 𝑛 ) ) = ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 100 |
95 99
|
eqtri |
⊢ ∪ 𝑛 ∈ ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ( 𝐹 ‘ 𝑛 ) = ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 101 |
94 100
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) = ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 102 |
101
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ↔ ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ dom vol ) ) |
| 103 |
88 102
|
sylibrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol → ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) ) |
| 104 |
|
oveq1 |
⊢ ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) → ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 105 |
|
inss1 |
⊢ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐸 |
| 106 |
105 28
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ⊆ ℝ ) |
| 107 |
|
ovolsscl |
⊢ ( ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 108 |
105 4 7 107
|
mp3an2ani |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 109 |
|
mblsplit |
⊢ ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ dom vol ∧ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) + ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 110 |
85 106 108 109
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) + ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 111 |
|
in32 |
⊢ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) |
| 112 |
|
inss2 |
⊢ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ⊆ ( 𝐹 ‘ ( 𝑘 + 1 ) ) |
| 113 |
83
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 114 |
113 90
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 115 |
|
eluzfz2 |
⊢ ( ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( 𝑘 + 1 ) ∈ ( 1 ... ( 𝑘 + 1 ) ) ) |
| 116 |
97
|
ssiun2s |
⊢ ( ( 𝑘 + 1 ) ∈ ( 1 ... ( 𝑘 + 1 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) |
| 117 |
114 115 116
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) |
| 118 |
112 117
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) |
| 119 |
|
dfss2 |
⊢ ( ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ↔ ( ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 120 |
118 119
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 121 |
111 120
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 122 |
121
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 123 |
|
indif2 |
⊢ ( 𝐸 ∩ ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 124 |
|
uncom |
⊢ ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∪ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) |
| 125 |
101 124
|
eqtr2di |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∪ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) = ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) |
| 126 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → Disj 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ) |
| 127 |
113
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 128 |
16
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 ∈ ℕ ) |
| 129 |
128
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 ∈ ℝ ) |
| 130 |
|
elfzle2 |
⊢ ( 𝑛 ∈ ( 1 ... 𝑘 ) → 𝑛 ≤ 𝑘 ) |
| 131 |
130
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 ≤ 𝑘 ) |
| 132 |
89
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑘 ∈ ℕ ) |
| 133 |
|
nnleltp1 |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝑛 ≤ 𝑘 ↔ 𝑛 < ( 𝑘 + 1 ) ) ) |
| 134 |
128 132 133
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝑛 ≤ 𝑘 ↔ 𝑛 < ( 𝑘 + 1 ) ) ) |
| 135 |
131 134
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 < ( 𝑘 + 1 ) ) |
| 136 |
129 135
|
gtned |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝑘 + 1 ) ≠ 𝑛 ) |
| 137 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 138 |
|
fveq2 |
⊢ ( 𝑖 = 𝑛 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 139 |
137 138
|
disji2 |
⊢ ( ( Disj 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝑘 + 1 ) ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 + 1 ) ≠ 𝑛 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∩ ( 𝐹 ‘ 𝑛 ) ) = ∅ ) |
| 140 |
126 127 128 136 139
|
syl121anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∩ ( 𝐹 ‘ 𝑛 ) ) = ∅ ) |
| 141 |
140
|
iuneq2dv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∩ ( 𝐹 ‘ 𝑛 ) ) = ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ∅ ) |
| 142 |
|
iunin2 |
⊢ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∩ ( 𝐹 ‘ 𝑛 ) ) = ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) |
| 143 |
|
iun0 |
⊢ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ∅ = ∅ |
| 144 |
141 142 143
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) = ∅ ) |
| 145 |
|
uneqdifeq |
⊢ ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) = ∅ ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∪ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) = ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ↔ ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) |
| 146 |
117 144 145
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∪ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) = ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ↔ ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) |
| 147 |
125 146
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) |
| 148 |
147
|
ineq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐸 ∩ ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) |
| 149 |
123 148
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) |
| 150 |
149
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 151 |
122 150
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) + ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) = ( ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) + ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 152 |
|
inss1 |
⊢ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ⊆ 𝐸 |
| 153 |
|
ovolsscl |
⊢ ( ( ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ∈ ℝ ) |
| 154 |
152 4 7 153
|
mp3an2ani |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ∈ ℝ ) |
| 155 |
154
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ∈ ℂ ) |
| 156 |
15
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℂ ) |
| 157 |
155 156
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) + ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) = ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 158 |
110 151 157
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 159 |
|
seqp1 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( 𝐻 ‘ ( 𝑘 + 1 ) ) ) ) |
| 160 |
91 159
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( 𝐻 ‘ ( 𝑘 + 1 ) ) ) ) |
| 161 |
97
|
ineq2d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝐸 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 162 |
161
|
fveq2d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 163 |
|
fvex |
⊢ ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ∈ V |
| 164 |
162 3 163
|
fvmpt |
⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( 𝐻 ‘ ( 𝑘 + 1 ) ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 165 |
113 164
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ ( 𝑘 + 1 ) ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 166 |
165
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( 𝐻 ‘ ( 𝑘 + 1 ) ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 167 |
160 166
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 168 |
158 167
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ↔ ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 169 |
104 168
|
imbitrrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 170 |
103 169
|
anim12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) → ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 171 |
170
|
expcom |
⊢ ( 𝑘 ∈ ℕ → ( 𝜑 → ( ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) → ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 172 |
171
|
a2d |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) ) → ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 173 |
41 50 59 50 82 172
|
nnind |
⊢ ( 𝑘 ∈ ℕ → ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) ) ) |
| 174 |
173
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) ) |
| 175 |
174
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) |
| 176 |
175
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) = ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 177 |
176
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ) = ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ) ) |
| 178 |
174
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) |
| 179 |
|
mblsplit |
⊢ ( ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ 𝐸 ) = ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 180 |
178 28 7 179
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ 𝐸 ) = ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 181 |
32 177 180
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝐸 ) ) |