Metamath Proof Explorer
		
		
		
		Description:  An elimination deduction.  (Contributed by Alan Sare, 17-Oct-2017)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						mp3an2ani.1 | 
						⊢ 𝜑  | 
					
					
						 | 
						 | 
						mp3an2ani.2 | 
						⊢ ( 𝜓  →  𝜒 )  | 
					
					
						 | 
						 | 
						mp3an2ani.3 | 
						⊢ ( ( 𝜓  ∧  𝜃 )  →  𝜏 )  | 
					
					
						 | 
						 | 
						mp3an2ani.4 | 
						⊢ ( ( 𝜑  ∧  𝜒  ∧  𝜏 )  →  𝜂 )  | 
					
				
					 | 
					Assertion | 
					mp3an2ani | 
					⊢  ( ( 𝜓  ∧  𝜃 )  →  𝜂 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mp3an2ani.1 | 
							⊢ 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							mp3an2ani.2 | 
							⊢ ( 𝜓  →  𝜒 )  | 
						
						
							| 3 | 
							
								
							 | 
							mp3an2ani.3 | 
							⊢ ( ( 𝜓  ∧  𝜃 )  →  𝜏 )  | 
						
						
							| 4 | 
							
								
							 | 
							mp3an2ani.4 | 
							⊢ ( ( 𝜑  ∧  𝜒  ∧  𝜏 )  →  𝜂 )  | 
						
						
							| 5 | 
							
								1 2 3 4
							 | 
							mp3an3an | 
							⊢ ( ( 𝜓  ∧  ( 𝜓  ∧  𝜃 ) )  →  𝜂 )  | 
						
						
							| 6 | 
							
								5
							 | 
							anabss5 | 
							⊢ ( ( 𝜓  ∧  𝜃 )  →  𝜂 )  |