Step |
Hyp |
Ref |
Expression |
1 |
|
voliun.1 |
⊢ 𝑆 = seq 1 ( + , 𝐺 ) |
2 |
|
voliun.2 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) |
3 |
|
simpl |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → 𝐴 ∈ dom vol ) |
4 |
3
|
ralimi |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ) |
5 |
4
|
adantr |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ) |
6 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ 𝐴 ) = ( 𝑛 ∈ ℕ ↦ 𝐴 ) |
7 |
6
|
fmpt |
⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ↔ ( 𝑛 ∈ ℕ ↦ 𝐴 ) : ℕ ⟶ dom vol ) |
8 |
5 7
|
sylib |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ 𝐴 ) : ℕ ⟶ dom vol ) |
9 |
6
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol ) → ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) = 𝐴 ) |
10 |
9
|
adantrr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ) → ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) = 𝐴 ) |
11 |
10
|
ralimiaa |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ∀ 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) = 𝐴 ) |
12 |
|
disjeq2 |
⊢ ( ∀ 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) = 𝐴 → ( Disj 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ↔ Disj 𝑛 ∈ ℕ 𝐴 ) ) |
13 |
11 12
|
syl |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( Disj 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ↔ Disj 𝑛 ∈ ℕ 𝐴 ) ) |
14 |
13
|
biimpar |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → Disj 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) |
15 |
|
nfcv |
⊢ Ⅎ 𝑖 ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) |
16 |
|
nffvmpt1 |
⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) |
17 |
|
fveq2 |
⊢ ( 𝑛 = 𝑖 → ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) |
18 |
15 16 17
|
cbvdisj |
⊢ ( Disj 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ↔ Disj 𝑖 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) |
19 |
14 18
|
sylib |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → Disj 𝑖 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) |
20 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑥 ∩ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑥 ∩ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) |
21 |
|
eqid |
⊢ seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) |
22 |
|
nfcv |
⊢ Ⅎ 𝑚 ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) |
23 |
|
nfcv |
⊢ Ⅎ 𝑛 vol |
24 |
|
nffvmpt1 |
⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑚 ) |
25 |
23 24
|
nffv |
⊢ Ⅎ 𝑛 ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑚 ) ) |
26 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑚 → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) = ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
27 |
22 25 26
|
cbvmpt |
⊢ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
28 |
9
|
fveq2d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol ) → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) = ( vol ‘ 𝐴 ) ) |
29 |
28
|
eleq1d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol ) → ( ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ↔ ( vol ‘ 𝐴 ) ∈ ℝ ) ) |
30 |
29
|
biimprd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol ) → ( ( vol ‘ 𝐴 ) ∈ ℝ → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ) ) |
31 |
30
|
impr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ) |
32 |
31
|
ralimiaa |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ) |
33 |
32
|
adantr |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ) |
34 |
|
nfv |
⊢ Ⅎ 𝑖 ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ |
35 |
23 16
|
nffv |
⊢ Ⅎ 𝑛 ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) |
36 |
35
|
nfel1 |
⊢ Ⅎ 𝑛 ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ |
37 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑖 → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) = ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) ) |
38 |
37
|
eleq1d |
⊢ ( 𝑛 = 𝑖 → ( ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ↔ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ ) ) |
39 |
34 36 38
|
cbvralw |
⊢ ( ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ↔ ∀ 𝑖 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ ) |
40 |
33 39
|
sylib |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ∀ 𝑖 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ ) |
41 |
8 19 20 21 27 40
|
voliunlem3 |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( vol ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ 𝐴 ) ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) |
42 |
|
dfiun2g |
⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ∪ 𝑛 ∈ ℕ 𝐴 = ∪ { 𝑥 ∣ ∃ 𝑛 ∈ ℕ 𝑥 = 𝐴 } ) |
43 |
5 42
|
syl |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ∪ 𝑛 ∈ ℕ 𝐴 = ∪ { 𝑥 ∣ ∃ 𝑛 ∈ ℕ 𝑥 = 𝐴 } ) |
44 |
6
|
rnmpt |
⊢ ran ( 𝑛 ∈ ℕ ↦ 𝐴 ) = { 𝑥 ∣ ∃ 𝑛 ∈ ℕ 𝑥 = 𝐴 } |
45 |
44
|
unieqi |
⊢ ∪ ran ( 𝑛 ∈ ℕ ↦ 𝐴 ) = ∪ { 𝑥 ∣ ∃ 𝑛 ∈ ℕ 𝑥 = 𝐴 } |
46 |
43 45
|
eqtr4di |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ∪ 𝑛 ∈ ℕ 𝐴 = ∪ ran ( 𝑛 ∈ ℕ ↦ 𝐴 ) ) |
47 |
46
|
fveq2d |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) = ( vol ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ 𝐴 ) ) ) |
48 |
|
eqid |
⊢ ℕ = ℕ |
49 |
28
|
adantrr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) = ( vol ‘ 𝐴 ) ) |
50 |
49
|
ralimiaa |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) = ( vol ‘ 𝐴 ) ) |
51 |
50
|
adantr |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) = ( vol ‘ 𝐴 ) ) |
52 |
|
mpteq12 |
⊢ ( ( ℕ = ℕ ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) = ( vol ‘ 𝐴 ) ) → ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) |
53 |
48 51 52
|
sylancr |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) |
54 |
2 53
|
eqtr4id |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) |
55 |
54
|
seqeq3d |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → seq 1 ( + , 𝐺 ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) ) |
56 |
1 55
|
eqtrid |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → 𝑆 = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) ) |
57 |
56
|
rneqd |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ran 𝑆 = ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) ) |
58 |
57
|
supeq1d |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) |
59 |
41 47 58
|
3eqtr4d |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) = sup ( ran 𝑆 , ℝ* , < ) ) |