| Step |
Hyp |
Ref |
Expression |
| 1 |
|
voliun.1 |
⊢ 𝑆 = seq 1 ( + , 𝐺 ) |
| 2 |
|
voliun.2 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) |
| 3 |
|
simpl |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → 𝐴 ∈ dom vol ) |
| 4 |
3
|
ralimi |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ) |
| 5 |
4
|
adantr |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ) |
| 6 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ 𝐴 ) = ( 𝑛 ∈ ℕ ↦ 𝐴 ) |
| 7 |
6
|
fmpt |
⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ↔ ( 𝑛 ∈ ℕ ↦ 𝐴 ) : ℕ ⟶ dom vol ) |
| 8 |
5 7
|
sylib |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ 𝐴 ) : ℕ ⟶ dom vol ) |
| 9 |
6
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol ) → ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) = 𝐴 ) |
| 10 |
9
|
adantrr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ) → ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) = 𝐴 ) |
| 11 |
10
|
ralimiaa |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ∀ 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) = 𝐴 ) |
| 12 |
|
disjeq2 |
⊢ ( ∀ 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) = 𝐴 → ( Disj 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ↔ Disj 𝑛 ∈ ℕ 𝐴 ) ) |
| 13 |
11 12
|
syl |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( Disj 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ↔ Disj 𝑛 ∈ ℕ 𝐴 ) ) |
| 14 |
13
|
biimpar |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → Disj 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑖 ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) |
| 16 |
|
nffvmpt1 |
⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) |
| 17 |
|
fveq2 |
⊢ ( 𝑛 = 𝑖 → ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) |
| 18 |
15 16 17
|
cbvdisj |
⊢ ( Disj 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ↔ Disj 𝑖 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) |
| 19 |
14 18
|
sylib |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → Disj 𝑖 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) |
| 20 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑥 ∩ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑥 ∩ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) |
| 21 |
|
eqid |
⊢ seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) |
| 22 |
|
nfcv |
⊢ Ⅎ 𝑚 ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) |
| 23 |
|
nfcv |
⊢ Ⅎ 𝑛 vol |
| 24 |
|
nffvmpt1 |
⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑚 ) |
| 25 |
23 24
|
nffv |
⊢ Ⅎ 𝑛 ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑚 ) ) |
| 26 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑚 → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) = ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
| 27 |
22 25 26
|
cbvmpt |
⊢ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
| 28 |
9
|
fveq2d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol ) → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) = ( vol ‘ 𝐴 ) ) |
| 29 |
28
|
eleq1d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol ) → ( ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ↔ ( vol ‘ 𝐴 ) ∈ ℝ ) ) |
| 30 |
29
|
biimprd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol ) → ( ( vol ‘ 𝐴 ) ∈ ℝ → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ) ) |
| 31 |
30
|
impr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ) |
| 32 |
31
|
ralimiaa |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ) |
| 33 |
32
|
adantr |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ) |
| 34 |
|
nfv |
⊢ Ⅎ 𝑖 ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ |
| 35 |
23 16
|
nffv |
⊢ Ⅎ 𝑛 ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) |
| 36 |
35
|
nfel1 |
⊢ Ⅎ 𝑛 ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ |
| 37 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑖 → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) = ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) ) |
| 38 |
37
|
eleq1d |
⊢ ( 𝑛 = 𝑖 → ( ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ↔ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ ) ) |
| 39 |
34 36 38
|
cbvralw |
⊢ ( ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ↔ ∀ 𝑖 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ ) |
| 40 |
33 39
|
sylib |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ∀ 𝑖 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ ) |
| 41 |
8 19 20 21 27 40
|
voliunlem3 |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( vol ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ 𝐴 ) ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) |
| 42 |
|
dfiun2g |
⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ∪ 𝑛 ∈ ℕ 𝐴 = ∪ { 𝑥 ∣ ∃ 𝑛 ∈ ℕ 𝑥 = 𝐴 } ) |
| 43 |
5 42
|
syl |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ∪ 𝑛 ∈ ℕ 𝐴 = ∪ { 𝑥 ∣ ∃ 𝑛 ∈ ℕ 𝑥 = 𝐴 } ) |
| 44 |
6
|
rnmpt |
⊢ ran ( 𝑛 ∈ ℕ ↦ 𝐴 ) = { 𝑥 ∣ ∃ 𝑛 ∈ ℕ 𝑥 = 𝐴 } |
| 45 |
44
|
unieqi |
⊢ ∪ ran ( 𝑛 ∈ ℕ ↦ 𝐴 ) = ∪ { 𝑥 ∣ ∃ 𝑛 ∈ ℕ 𝑥 = 𝐴 } |
| 46 |
43 45
|
eqtr4di |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ∪ 𝑛 ∈ ℕ 𝐴 = ∪ ran ( 𝑛 ∈ ℕ ↦ 𝐴 ) ) |
| 47 |
46
|
fveq2d |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) = ( vol ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ 𝐴 ) ) ) |
| 48 |
|
eqid |
⊢ ℕ = ℕ |
| 49 |
28
|
adantrr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) = ( vol ‘ 𝐴 ) ) |
| 50 |
49
|
ralimiaa |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) = ( vol ‘ 𝐴 ) ) |
| 51 |
50
|
adantr |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) = ( vol ‘ 𝐴 ) ) |
| 52 |
|
mpteq12 |
⊢ ( ( ℕ = ℕ ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) = ( vol ‘ 𝐴 ) ) → ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) |
| 53 |
48 51 52
|
sylancr |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) |
| 54 |
2 53
|
eqtr4id |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) |
| 55 |
54
|
seqeq3d |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → seq 1 ( + , 𝐺 ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) ) |
| 56 |
1 55
|
eqtrid |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → 𝑆 = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) ) |
| 57 |
56
|
rneqd |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ran 𝑆 = ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) ) |
| 58 |
57
|
supeq1d |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) |
| 59 |
41 47 58
|
3eqtr4d |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) = sup ( ran 𝑆 , ℝ* , < ) ) |