Metamath Proof Explorer


Theorem voliunlem3

Description: Lemma for voliun . (Contributed by Mario Carneiro, 20-Mar-2014)

Ref Expression
Hypotheses voliunlem.3 ( 𝜑𝐹 : ℕ ⟶ dom vol )
voliunlem.5 ( 𝜑Disj 𝑖 ∈ ℕ ( 𝐹𝑖 ) )
voliunlem.6 𝐻 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝑥 ∩ ( 𝐹𝑛 ) ) ) )
voliunlem3.1 𝑆 = seq 1 ( + , 𝐺 )
voliunlem3.2 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐹𝑛 ) ) )
voliunlem3.4 ( 𝜑 → ∀ 𝑖 ∈ ℕ ( vol ‘ ( 𝐹𝑖 ) ) ∈ ℝ )
Assertion voliunlem3 ( 𝜑 → ( vol ‘ ran 𝐹 ) = sup ( ran 𝑆 , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 voliunlem.3 ( 𝜑𝐹 : ℕ ⟶ dom vol )
2 voliunlem.5 ( 𝜑Disj 𝑖 ∈ ℕ ( 𝐹𝑖 ) )
3 voliunlem.6 𝐻 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝑥 ∩ ( 𝐹𝑛 ) ) ) )
4 voliunlem3.1 𝑆 = seq 1 ( + , 𝐺 )
5 voliunlem3.2 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐹𝑛 ) ) )
6 voliunlem3.4 ( 𝜑 → ∀ 𝑖 ∈ ℕ ( vol ‘ ( 𝐹𝑖 ) ) ∈ ℝ )
7 1 2 3 voliunlem2 ( 𝜑 ran 𝐹 ∈ dom vol )
8 mblvol ( ran 𝐹 ∈ dom vol → ( vol ‘ ran 𝐹 ) = ( vol* ‘ ran 𝐹 ) )
9 7 8 syl ( 𝜑 → ( vol ‘ ran 𝐹 ) = ( vol* ‘ ran 𝐹 ) )
10 1 frnd ( 𝜑 → ran 𝐹 ⊆ dom vol )
11 mblss ( 𝑥 ∈ dom vol → 𝑥 ⊆ ℝ )
12 reex ℝ ∈ V
13 12 elpw2 ( 𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ )
14 11 13 sylibr ( 𝑥 ∈ dom vol → 𝑥 ∈ 𝒫 ℝ )
15 14 ssriv dom vol ⊆ 𝒫 ℝ
16 10 15 sstrdi ( 𝜑 → ran 𝐹 ⊆ 𝒫 ℝ )
17 sspwuni ( ran 𝐹 ⊆ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ )
18 16 17 sylib ( 𝜑 ran 𝐹 ⊆ ℝ )
19 ovolcl ( ran 𝐹 ⊆ ℝ → ( vol* ‘ ran 𝐹 ) ∈ ℝ* )
20 18 19 syl ( 𝜑 → ( vol* ‘ ran 𝐹 ) ∈ ℝ* )
21 nnuz ℕ = ( ℤ ‘ 1 )
22 1zzd ( 𝜑 → 1 ∈ ℤ )
23 2fveq3 ( 𝑛 = 𝑘 → ( vol ‘ ( 𝐹𝑛 ) ) = ( vol ‘ ( 𝐹𝑘 ) ) )
24 fvex ( vol ‘ ( 𝐹𝑘 ) ) ∈ V
25 23 5 24 fvmpt ( 𝑘 ∈ ℕ → ( 𝐺𝑘 ) = ( vol ‘ ( 𝐹𝑘 ) ) )
26 25 adantl ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐺𝑘 ) = ( vol ‘ ( 𝐹𝑘 ) ) )
27 2fveq3 ( 𝑖 = 𝑘 → ( vol ‘ ( 𝐹𝑖 ) ) = ( vol ‘ ( 𝐹𝑘 ) ) )
28 27 eleq1d ( 𝑖 = 𝑘 → ( ( vol ‘ ( 𝐹𝑖 ) ) ∈ ℝ ↔ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) )
29 28 rspccva ( ( ∀ 𝑖 ∈ ℕ ( vol ‘ ( 𝐹𝑖 ) ) ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ )
30 6 29 sylan ( ( 𝜑𝑘 ∈ ℕ ) → ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ )
31 26 30 eqeltrd ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐺𝑘 ) ∈ ℝ )
32 21 22 31 serfre ( 𝜑 → seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ )
33 4 feq1i ( 𝑆 : ℕ ⟶ ℝ ↔ seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ )
34 32 33 sylibr ( 𝜑𝑆 : ℕ ⟶ ℝ )
35 34 frnd ( 𝜑 → ran 𝑆 ⊆ ℝ )
36 ressxr ℝ ⊆ ℝ*
37 35 36 sstrdi ( 𝜑 → ran 𝑆 ⊆ ℝ* )
38 supxrcl ( ran 𝑆 ⊆ ℝ* → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* )
39 37 38 syl ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* )
40 eqid seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹𝑛 ) ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹𝑛 ) ) ) )
41 eqid ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹𝑛 ) ) )
42 1 ffvelrnda ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ∈ dom vol )
43 mblss ( ( 𝐹𝑛 ) ∈ dom vol → ( 𝐹𝑛 ) ⊆ ℝ )
44 42 43 syl ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ⊆ ℝ )
45 mblvol ( ( 𝐹𝑛 ) ∈ dom vol → ( vol ‘ ( 𝐹𝑛 ) ) = ( vol* ‘ ( 𝐹𝑛 ) ) )
46 42 45 syl ( ( 𝜑𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐹𝑛 ) ) = ( vol* ‘ ( 𝐹𝑛 ) ) )
47 2fveq3 ( 𝑖 = 𝑛 → ( vol ‘ ( 𝐹𝑖 ) ) = ( vol ‘ ( 𝐹𝑛 ) ) )
48 47 eleq1d ( 𝑖 = 𝑛 → ( ( vol ‘ ( 𝐹𝑖 ) ) ∈ ℝ ↔ ( vol ‘ ( 𝐹𝑛 ) ) ∈ ℝ ) )
49 48 rspccva ( ( ∀ 𝑖 ∈ ℕ ( vol ‘ ( 𝐹𝑖 ) ) ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐹𝑛 ) ) ∈ ℝ )
50 6 49 sylan ( ( 𝜑𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐹𝑛 ) ) ∈ ℝ )
51 46 50 eqeltrrd ( ( 𝜑𝑛 ∈ ℕ ) → ( vol* ‘ ( 𝐹𝑛 ) ) ∈ ℝ )
52 40 41 44 51 ovoliun ( 𝜑 → ( vol* ‘ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ) ≤ sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹𝑛 ) ) ) ) , ℝ* , < ) )
53 1 ffnd ( 𝜑𝐹 Fn ℕ )
54 fniunfv ( 𝐹 Fn ℕ → 𝑛 ∈ ℕ ( 𝐹𝑛 ) = ran 𝐹 )
55 53 54 syl ( 𝜑 𝑛 ∈ ℕ ( 𝐹𝑛 ) = ran 𝐹 )
56 55 fveq2d ( 𝜑 → ( vol* ‘ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ) = ( vol* ‘ ran 𝐹 ) )
57 46 mpteq2dva ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐹𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹𝑛 ) ) ) )
58 5 57 syl5eq ( 𝜑𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹𝑛 ) ) ) )
59 58 seqeq3d ( 𝜑 → seq 1 ( + , 𝐺 ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹𝑛 ) ) ) ) )
60 4 59 syl5req ( 𝜑 → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹𝑛 ) ) ) ) = 𝑆 )
61 60 rneqd ( 𝜑 → ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹𝑛 ) ) ) ) = ran 𝑆 )
62 61 supeq1d ( 𝜑 → sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹𝑛 ) ) ) ) , ℝ* , < ) = sup ( ran 𝑆 , ℝ* , < ) )
63 52 56 62 3brtr3d ( 𝜑 → ( vol* ‘ ran 𝐹 ) ≤ sup ( ran 𝑆 , ℝ* , < ) )
64 ovolge0 ( ran 𝐹 ⊆ ℝ → 0 ≤ ( vol* ‘ ran 𝐹 ) )
65 18 64 syl ( 𝜑 → 0 ≤ ( vol* ‘ ran 𝐹 ) )
66 mnflt0 -∞ < 0
67 mnfxr -∞ ∈ ℝ*
68 0xr 0 ∈ ℝ*
69 xrltletr ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ ( vol* ‘ ran 𝐹 ) ∈ ℝ* ) → ( ( -∞ < 0 ∧ 0 ≤ ( vol* ‘ ran 𝐹 ) ) → -∞ < ( vol* ‘ ran 𝐹 ) ) )
70 67 68 69 mp3an12 ( ( vol* ‘ ran 𝐹 ) ∈ ℝ* → ( ( -∞ < 0 ∧ 0 ≤ ( vol* ‘ ran 𝐹 ) ) → -∞ < ( vol* ‘ ran 𝐹 ) ) )
71 66 70 mpani ( ( vol* ‘ ran 𝐹 ) ∈ ℝ* → ( 0 ≤ ( vol* ‘ ran 𝐹 ) → -∞ < ( vol* ‘ ran 𝐹 ) ) )
72 20 65 71 sylc ( 𝜑 → -∞ < ( vol* ‘ ran 𝐹 ) )
73 xrrebnd ( ( vol* ‘ ran 𝐹 ) ∈ ℝ* → ( ( vol* ‘ ran 𝐹 ) ∈ ℝ ↔ ( -∞ < ( vol* ‘ ran 𝐹 ) ∧ ( vol* ‘ ran 𝐹 ) < +∞ ) ) )
74 20 73 syl ( 𝜑 → ( ( vol* ‘ ran 𝐹 ) ∈ ℝ ↔ ( -∞ < ( vol* ‘ ran 𝐹 ) ∧ ( vol* ‘ ran 𝐹 ) < +∞ ) ) )
75 12 elpw2 ( ran 𝐹 ∈ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ )
76 18 75 sylibr ( 𝜑 ran 𝐹 ∈ 𝒫 ℝ )
77 simpl ( ( 𝑥 = ran 𝐹𝜑 ) → 𝑥 = ran 𝐹 )
78 77 sseq1d ( ( 𝑥 = ran 𝐹𝜑 ) → ( 𝑥 ⊆ ℝ ↔ ran 𝐹 ⊆ ℝ ) )
79 77 fveq2d ( ( 𝑥 = ran 𝐹𝜑 ) → ( vol* ‘ 𝑥 ) = ( vol* ‘ ran 𝐹 ) )
80 79 eleq1d ( ( 𝑥 = ran 𝐹𝜑 ) → ( ( vol* ‘ 𝑥 ) ∈ ℝ ↔ ( vol* ‘ ran 𝐹 ) ∈ ℝ ) )
81 simpll ( ( ( 𝑥 = ran 𝐹𝜑 ) ∧ 𝑛 ∈ ℕ ) → 𝑥 = ran 𝐹 )
82 81 ineq1d ( ( ( 𝑥 = ran 𝐹𝜑 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ∩ ( 𝐹𝑛 ) ) = ( ran 𝐹 ∩ ( 𝐹𝑛 ) ) )
83 fnfvelrn ( ( 𝐹 Fn ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ∈ ran 𝐹 )
84 53 83 sylan ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ∈ ran 𝐹 )
85 elssuni ( ( 𝐹𝑛 ) ∈ ran 𝐹 → ( 𝐹𝑛 ) ⊆ ran 𝐹 )
86 84 85 syl ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ⊆ ran 𝐹 )
87 86 adantll ( ( ( 𝑥 = ran 𝐹𝜑 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ⊆ ran 𝐹 )
88 sseqin2 ( ( 𝐹𝑛 ) ⊆ ran 𝐹 ↔ ( ran 𝐹 ∩ ( 𝐹𝑛 ) ) = ( 𝐹𝑛 ) )
89 87 88 sylib ( ( ( 𝑥 = ran 𝐹𝜑 ) ∧ 𝑛 ∈ ℕ ) → ( ran 𝐹 ∩ ( 𝐹𝑛 ) ) = ( 𝐹𝑛 ) )
90 82 89 eqtrd ( ( ( 𝑥 = ran 𝐹𝜑 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ∩ ( 𝐹𝑛 ) ) = ( 𝐹𝑛 ) )
91 90 fveq2d ( ( ( 𝑥 = ran 𝐹𝜑 ) ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐹𝑛 ) ) ) = ( vol* ‘ ( 𝐹𝑛 ) ) )
92 46 adantll ( ( ( 𝑥 = ran 𝐹𝜑 ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐹𝑛 ) ) = ( vol* ‘ ( 𝐹𝑛 ) ) )
93 91 92 eqtr4d ( ( ( 𝑥 = ran 𝐹𝜑 ) ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐹𝑛 ) ) ) = ( vol ‘ ( 𝐹𝑛 ) ) )
94 93 mpteq2dva ( ( 𝑥 = ran 𝐹𝜑 ) → ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝑥 ∩ ( 𝐹𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐹𝑛 ) ) ) )
95 94 adantrr ( ( 𝑥 = ran 𝐹 ∧ ( 𝜑𝑘 ∈ ℕ ) ) → ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝑥 ∩ ( 𝐹𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐹𝑛 ) ) ) )
96 95 3 5 3eqtr4g ( ( 𝑥 = ran 𝐹 ∧ ( 𝜑𝑘 ∈ ℕ ) ) → 𝐻 = 𝐺 )
97 96 seqeq3d ( ( 𝑥 = ran 𝐹 ∧ ( 𝜑𝑘 ∈ ℕ ) ) → seq 1 ( + , 𝐻 ) = seq 1 ( + , 𝐺 ) )
98 97 4 eqtr4di ( ( 𝑥 = ran 𝐹 ∧ ( 𝜑𝑘 ∈ ℕ ) ) → seq 1 ( + , 𝐻 ) = 𝑆 )
99 98 fveq1d ( ( 𝑥 = ran 𝐹 ∧ ( 𝜑𝑘 ∈ ℕ ) ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) = ( 𝑆𝑘 ) )
100 difeq1 ( 𝑥 = ran 𝐹 → ( 𝑥 ran 𝐹 ) = ( ran 𝐹 ran 𝐹 ) )
101 difid ( ran 𝐹 ran 𝐹 ) = ∅
102 100 101 eqtrdi ( 𝑥 = ran 𝐹 → ( 𝑥 ran 𝐹 ) = ∅ )
103 102 fveq2d ( 𝑥 = ran 𝐹 → ( vol* ‘ ( 𝑥 ran 𝐹 ) ) = ( vol* ‘ ∅ ) )
104 ovol0 ( vol* ‘ ∅ ) = 0
105 103 104 eqtrdi ( 𝑥 = ran 𝐹 → ( vol* ‘ ( 𝑥 ran 𝐹 ) ) = 0 )
106 105 adantr ( ( 𝑥 = ran 𝐹 ∧ ( 𝜑𝑘 ∈ ℕ ) ) → ( vol* ‘ ( 𝑥 ran 𝐹 ) ) = 0 )
107 99 106 oveq12d ( ( 𝑥 = ran 𝐹 ∧ ( 𝜑𝑘 ∈ ℕ ) ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ran 𝐹 ) ) ) = ( ( 𝑆𝑘 ) + 0 ) )
108 34 ffvelrnda ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝑆𝑘 ) ∈ ℝ )
109 108 adantl ( ( 𝑥 = ran 𝐹 ∧ ( 𝜑𝑘 ∈ ℕ ) ) → ( 𝑆𝑘 ) ∈ ℝ )
110 109 recnd ( ( 𝑥 = ran 𝐹 ∧ ( 𝜑𝑘 ∈ ℕ ) ) → ( 𝑆𝑘 ) ∈ ℂ )
111 110 addid1d ( ( 𝑥 = ran 𝐹 ∧ ( 𝜑𝑘 ∈ ℕ ) ) → ( ( 𝑆𝑘 ) + 0 ) = ( 𝑆𝑘 ) )
112 107 111 eqtrd ( ( 𝑥 = ran 𝐹 ∧ ( 𝜑𝑘 ∈ ℕ ) ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ran 𝐹 ) ) ) = ( 𝑆𝑘 ) )
113 fveq2 ( 𝑥 = ran 𝐹 → ( vol* ‘ 𝑥 ) = ( vol* ‘ ran 𝐹 ) )
114 113 adantr ( ( 𝑥 = ran 𝐹 ∧ ( 𝜑𝑘 ∈ ℕ ) ) → ( vol* ‘ 𝑥 ) = ( vol* ‘ ran 𝐹 ) )
115 112 114 breq12d ( ( 𝑥 = ran 𝐹 ∧ ( 𝜑𝑘 ∈ ℕ ) ) → ( ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ↔ ( 𝑆𝑘 ) ≤ ( vol* ‘ ran 𝐹 ) ) )
116 115 expr ( ( 𝑥 = ran 𝐹𝜑 ) → ( 𝑘 ∈ ℕ → ( ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ↔ ( 𝑆𝑘 ) ≤ ( vol* ‘ ran 𝐹 ) ) ) )
117 116 pm5.74d ( ( 𝑥 = ran 𝐹𝜑 ) → ( ( 𝑘 ∈ ℕ → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ↔ ( 𝑘 ∈ ℕ → ( 𝑆𝑘 ) ≤ ( vol* ‘ ran 𝐹 ) ) ) )
118 80 117 imbi12d ( ( 𝑥 = ran 𝐹𝜑 ) → ( ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ↔ ( ( vol* ‘ ran 𝐹 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( 𝑆𝑘 ) ≤ ( vol* ‘ ran 𝐹 ) ) ) ) )
119 78 118 imbi12d ( ( 𝑥 = ran 𝐹𝜑 ) → ( ( 𝑥 ⊆ ℝ → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) ↔ ( ran 𝐹 ⊆ ℝ → ( ( vol* ‘ ran 𝐹 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( 𝑆𝑘 ) ≤ ( vol* ‘ ran 𝐹 ) ) ) ) ) )
120 119 pm5.74da ( 𝑥 = ran 𝐹 → ( ( 𝜑 → ( 𝑥 ⊆ ℝ → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) ) ↔ ( 𝜑 → ( ran 𝐹 ⊆ ℝ → ( ( vol* ‘ ran 𝐹 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( 𝑆𝑘 ) ≤ ( vol* ‘ ran 𝐹 ) ) ) ) ) ) )
121 1 3ad2ant1 ( ( 𝜑𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → 𝐹 : ℕ ⟶ dom vol )
122 2 3ad2ant1 ( ( 𝜑𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → Disj 𝑖 ∈ ℕ ( 𝐹𝑖 ) )
123 simp2 ( ( 𝜑𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → 𝑥 ⊆ ℝ )
124 simp3 ( ( 𝜑𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ 𝑥 ) ∈ ℝ )
125 121 122 3 123 124 voliunlem1 ( ( ( 𝜑𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) )
126 125 3exp1 ( 𝜑 → ( 𝑥 ⊆ ℝ → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) )
127 120 126 vtoclg ( ran 𝐹 ∈ 𝒫 ℝ → ( 𝜑 → ( ran 𝐹 ⊆ ℝ → ( ( vol* ‘ ran 𝐹 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( 𝑆𝑘 ) ≤ ( vol* ‘ ran 𝐹 ) ) ) ) ) )
128 76 127 mpcom ( 𝜑 → ( ran 𝐹 ⊆ ℝ → ( ( vol* ‘ ran 𝐹 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( 𝑆𝑘 ) ≤ ( vol* ‘ ran 𝐹 ) ) ) ) )
129 18 128 mpd ( 𝜑 → ( ( vol* ‘ ran 𝐹 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( 𝑆𝑘 ) ≤ ( vol* ‘ ran 𝐹 ) ) ) )
130 74 129 sylbird ( 𝜑 → ( ( -∞ < ( vol* ‘ ran 𝐹 ) ∧ ( vol* ‘ ran 𝐹 ) < +∞ ) → ( 𝑘 ∈ ℕ → ( 𝑆𝑘 ) ≤ ( vol* ‘ ran 𝐹 ) ) ) )
131 72 130 mpand ( 𝜑 → ( ( vol* ‘ ran 𝐹 ) < +∞ → ( 𝑘 ∈ ℕ → ( 𝑆𝑘 ) ≤ ( vol* ‘ ran 𝐹 ) ) ) )
132 nltpnft ( ( vol* ‘ ran 𝐹 ) ∈ ℝ* → ( ( vol* ‘ ran 𝐹 ) = +∞ ↔ ¬ ( vol* ‘ ran 𝐹 ) < +∞ ) )
133 20 132 syl ( 𝜑 → ( ( vol* ‘ ran 𝐹 ) = +∞ ↔ ¬ ( vol* ‘ ran 𝐹 ) < +∞ ) )
134 rexr ( ( 𝑆𝑘 ) ∈ ℝ → ( 𝑆𝑘 ) ∈ ℝ* )
135 pnfge ( ( 𝑆𝑘 ) ∈ ℝ* → ( 𝑆𝑘 ) ≤ +∞ )
136 108 134 135 3syl ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝑆𝑘 ) ≤ +∞ )
137 136 ex ( 𝜑 → ( 𝑘 ∈ ℕ → ( 𝑆𝑘 ) ≤ +∞ ) )
138 breq2 ( ( vol* ‘ ran 𝐹 ) = +∞ → ( ( 𝑆𝑘 ) ≤ ( vol* ‘ ran 𝐹 ) ↔ ( 𝑆𝑘 ) ≤ +∞ ) )
139 138 imbi2d ( ( vol* ‘ ran 𝐹 ) = +∞ → ( ( 𝑘 ∈ ℕ → ( 𝑆𝑘 ) ≤ ( vol* ‘ ran 𝐹 ) ) ↔ ( 𝑘 ∈ ℕ → ( 𝑆𝑘 ) ≤ +∞ ) ) )
140 137 139 syl5ibrcom ( 𝜑 → ( ( vol* ‘ ran 𝐹 ) = +∞ → ( 𝑘 ∈ ℕ → ( 𝑆𝑘 ) ≤ ( vol* ‘ ran 𝐹 ) ) ) )
141 133 140 sylbird ( 𝜑 → ( ¬ ( vol* ‘ ran 𝐹 ) < +∞ → ( 𝑘 ∈ ℕ → ( 𝑆𝑘 ) ≤ ( vol* ‘ ran 𝐹 ) ) ) )
142 131 141 pm2.61d ( 𝜑 → ( 𝑘 ∈ ℕ → ( 𝑆𝑘 ) ≤ ( vol* ‘ ran 𝐹 ) ) )
143 142 ralrimiv ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑆𝑘 ) ≤ ( vol* ‘ ran 𝐹 ) )
144 34 ffnd ( 𝜑𝑆 Fn ℕ )
145 breq1 ( 𝑧 = ( 𝑆𝑘 ) → ( 𝑧 ≤ ( vol* ‘ ran 𝐹 ) ↔ ( 𝑆𝑘 ) ≤ ( vol* ‘ ran 𝐹 ) ) )
146 145 ralrn ( 𝑆 Fn ℕ → ( ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ ( vol* ‘ ran 𝐹 ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑆𝑘 ) ≤ ( vol* ‘ ran 𝐹 ) ) )
147 144 146 syl ( 𝜑 → ( ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ ( vol* ‘ ran 𝐹 ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑆𝑘 ) ≤ ( vol* ‘ ran 𝐹 ) ) )
148 143 147 mpbird ( 𝜑 → ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ ( vol* ‘ ran 𝐹 ) )
149 supxrleub ( ( ran 𝑆 ⊆ ℝ* ∧ ( vol* ‘ ran 𝐹 ) ∈ ℝ* ) → ( sup ( ran 𝑆 , ℝ* , < ) ≤ ( vol* ‘ ran 𝐹 ) ↔ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ ( vol* ‘ ran 𝐹 ) ) )
150 37 20 149 syl2anc ( 𝜑 → ( sup ( ran 𝑆 , ℝ* , < ) ≤ ( vol* ‘ ran 𝐹 ) ↔ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ ( vol* ‘ ran 𝐹 ) ) )
151 148 150 mpbird ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( vol* ‘ ran 𝐹 ) )
152 20 39 63 151 xrletrid ( 𝜑 → ( vol* ‘ ran 𝐹 ) = sup ( ran 𝑆 , ℝ* , < ) )
153 9 152 eqtrd ( 𝜑 → ( vol ‘ ran 𝐹 ) = sup ( ran 𝑆 , ℝ* , < ) )