| Step |
Hyp |
Ref |
Expression |
| 1 |
|
voliunlem.3 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ dom vol ) |
| 2 |
|
voliunlem.5 |
⊢ ( 𝜑 → Disj 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ) |
| 3 |
|
voliunlem.6 |
⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 4 |
1
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ dom vol ) |
| 5 |
|
mblss |
⊢ ( 𝑥 ∈ dom vol → 𝑥 ⊆ ℝ ) |
| 6 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ ) |
| 7 |
5 6
|
sylibr |
⊢ ( 𝑥 ∈ dom vol → 𝑥 ∈ 𝒫 ℝ ) |
| 8 |
7
|
ssriv |
⊢ dom vol ⊆ 𝒫 ℝ |
| 9 |
4 8
|
sstrdi |
⊢ ( 𝜑 → ran 𝐹 ⊆ 𝒫 ℝ ) |
| 10 |
|
sspwuni |
⊢ ( ran 𝐹 ⊆ 𝒫 ℝ ↔ ∪ ran 𝐹 ⊆ ℝ ) |
| 11 |
9 10
|
sylib |
⊢ ( 𝜑 → ∪ ran 𝐹 ⊆ ℝ ) |
| 12 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ ) |
| 13 |
|
inundif |
⊢ ( ( 𝑥 ∩ ∪ ran 𝐹 ) ∪ ( 𝑥 ∖ ∪ ran 𝐹 ) ) = 𝑥 |
| 14 |
13
|
fveq2i |
⊢ ( vol* ‘ ( ( 𝑥 ∩ ∪ ran 𝐹 ) ∪ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) = ( vol* ‘ 𝑥 ) |
| 15 |
|
inss1 |
⊢ ( 𝑥 ∩ ∪ ran 𝐹 ) ⊆ 𝑥 |
| 16 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → 𝑥 ⊆ ℝ ) |
| 17 |
15 16
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( 𝑥 ∩ ∪ ran 𝐹 ) ⊆ ℝ ) |
| 18 |
|
ovolsscl |
⊢ ( ( ( 𝑥 ∩ ∪ ran 𝐹 ) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) ∈ ℝ ) |
| 19 |
15 18
|
mp3an1 |
⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) ∈ ℝ ) |
| 20 |
19
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) ∈ ℝ ) |
| 21 |
|
difss |
⊢ ( 𝑥 ∖ ∪ ran 𝐹 ) ⊆ 𝑥 |
| 22 |
21 16
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( 𝑥 ∖ ∪ ran 𝐹 ) ⊆ ℝ ) |
| 23 |
|
ovolsscl |
⊢ ( ( ( 𝑥 ∖ ∪ ran 𝐹 ) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ∈ ℝ ) |
| 24 |
21 23
|
mp3an1 |
⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ∈ ℝ ) |
| 25 |
24
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ∈ ℝ ) |
| 26 |
|
ovolun |
⊢ ( ( ( ( 𝑥 ∩ ∪ ran 𝐹 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) ∈ ℝ ) ∧ ( ( 𝑥 ∖ ∪ ran 𝐹 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝑥 ∩ ∪ ran 𝐹 ) ∪ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) |
| 27 |
17 20 22 25 26
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( ( 𝑥 ∩ ∪ ran 𝐹 ) ∪ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) |
| 28 |
14 27
|
eqbrtrrid |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ 𝑥 ) ≤ ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) |
| 29 |
20
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) ∈ ℝ* ) |
| 30 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 31 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → 1 ∈ ℤ ) |
| 32 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 33 |
32
|
ineq2d |
⊢ ( 𝑛 = 𝑘 → ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝑥 ∩ ( 𝐹 ‘ 𝑘 ) ) ) |
| 34 |
33
|
fveq2d |
⊢ ( 𝑛 = 𝑘 → ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 35 |
|
fvex |
⊢ ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ∈ V |
| 36 |
34 3 35
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( 𝐻 ‘ 𝑘 ) = ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 37 |
36
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ 𝑘 ) = ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 38 |
|
inss1 |
⊢ ( 𝑥 ∩ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝑥 |
| 39 |
|
ovolsscl |
⊢ ( ( ( 𝑥 ∩ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 40 |
38 39
|
mp3an1 |
⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 41 |
40
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 42 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 43 |
37 42
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ 𝑘 ) ∈ ℝ ) |
| 44 |
30 31 43
|
serfre |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → seq 1 ( + , 𝐻 ) : ℕ ⟶ ℝ ) |
| 45 |
44
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ran seq 1 ( + , 𝐻 ) ⊆ ℝ ) |
| 46 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 47 |
45 46
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ran seq 1 ( + , 𝐻 ) ⊆ ℝ* ) |
| 48 |
|
supxrcl |
⊢ ( ran seq 1 ( + , 𝐻 ) ⊆ ℝ* → sup ( ran seq 1 ( + , 𝐻 ) , ℝ* , < ) ∈ ℝ* ) |
| 49 |
47 48
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → sup ( ran seq 1 ( + , 𝐻 ) , ℝ* , < ) ∈ ℝ* ) |
| 50 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ 𝑥 ) ∈ ℝ ) |
| 51 |
50 25
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ∈ ℝ ) |
| 52 |
51
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ∈ ℝ* ) |
| 53 |
|
iunin2 |
⊢ ∪ 𝑛 ∈ ℕ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝑥 ∩ ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ) |
| 54 |
|
ffn |
⊢ ( 𝐹 : ℕ ⟶ dom vol → 𝐹 Fn ℕ ) |
| 55 |
|
fniunfv |
⊢ ( 𝐹 Fn ℕ → ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ∪ ran 𝐹 ) |
| 56 |
1 54 55
|
3syl |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ∪ ran 𝐹 ) |
| 57 |
56
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ∪ ran 𝐹 ) |
| 58 |
57
|
ineq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( 𝑥 ∩ ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ) = ( 𝑥 ∩ ∪ ran 𝐹 ) ) |
| 59 |
53 58
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ∪ 𝑛 ∈ ℕ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝑥 ∩ ∪ ran 𝐹 ) ) |
| 60 |
59
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑛 ∈ ℕ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) ) |
| 61 |
|
eqid |
⊢ seq 1 ( + , 𝐻 ) = seq 1 ( + , 𝐻 ) |
| 62 |
|
inss1 |
⊢ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝑥 |
| 63 |
62 16
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ ℝ ) |
| 64 |
63
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ ℝ ) |
| 65 |
|
ovolsscl |
⊢ ( ( ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 66 |
62 65
|
mp3an1 |
⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 67 |
66
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 68 |
67
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 69 |
61 3 64 68
|
ovoliun |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑛 ∈ ℕ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ≤ sup ( ran seq 1 ( + , 𝐻 ) , ℝ* , < ) ) |
| 70 |
60 69
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) ≤ sup ( ran seq 1 ( + , 𝐻 ) , ℝ* , < ) ) |
| 71 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → 𝐹 : ℕ ⟶ dom vol ) |
| 72 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → Disj 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ) |
| 73 |
71 72 3 16 50
|
voliunlem1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) |
| 74 |
44
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℝ ) |
| 75 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ∈ ℝ ) |
| 76 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ 𝑥 ) ∈ ℝ ) |
| 77 |
|
leaddsub |
⊢ ( ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℝ ∧ ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ∈ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ↔ ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) |
| 78 |
74 75 76 77
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ↔ ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) |
| 79 |
73 78
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) |
| 80 |
79
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ∀ 𝑘 ∈ ℕ ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) |
| 81 |
|
ffn |
⊢ ( seq 1 ( + , 𝐻 ) : ℕ ⟶ ℝ → seq 1 ( + , 𝐻 ) Fn ℕ ) |
| 82 |
|
breq1 |
⊢ ( 𝑧 = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) → ( 𝑧 ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ↔ ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) |
| 83 |
82
|
ralrn |
⊢ ( seq 1 ( + , 𝐻 ) Fn ℕ → ( ∀ 𝑧 ∈ ran seq 1 ( + , 𝐻 ) 𝑧 ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ↔ ∀ 𝑘 ∈ ℕ ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) |
| 84 |
44 81 83
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( ∀ 𝑧 ∈ ran seq 1 ( + , 𝐻 ) 𝑧 ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ↔ ∀ 𝑘 ∈ ℕ ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) |
| 85 |
80 84
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ∀ 𝑧 ∈ ran seq 1 ( + , 𝐻 ) 𝑧 ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) |
| 86 |
|
supxrleub |
⊢ ( ( ran seq 1 ( + , 𝐻 ) ⊆ ℝ* ∧ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ∈ ℝ* ) → ( sup ( ran seq 1 ( + , 𝐻 ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ↔ ∀ 𝑧 ∈ ran seq 1 ( + , 𝐻 ) 𝑧 ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) |
| 87 |
47 52 86
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( sup ( ran seq 1 ( + , 𝐻 ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ↔ ∀ 𝑧 ∈ ran seq 1 ( + , 𝐻 ) 𝑧 ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) |
| 88 |
85 87
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → sup ( ran seq 1 ( + , 𝐻 ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) |
| 89 |
29 49 52 70 88
|
xrletrd |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) |
| 90 |
|
leaddsub |
⊢ ( ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) ∈ ℝ ∧ ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ∈ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ↔ ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) |
| 91 |
20 25 50 90
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ↔ ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) |
| 92 |
89 91
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) |
| 93 |
20 25
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ∈ ℝ ) |
| 94 |
50 93
|
letri3d |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ↔ ( ( vol* ‘ 𝑥 ) ≤ ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ∧ ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) |
| 95 |
28 92 94
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) |
| 96 |
95
|
3expia |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ) → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) |
| 97 |
12 96
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ℝ ) → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) |
| 98 |
97
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) |
| 99 |
|
ismbl |
⊢ ( ∪ ran 𝐹 ∈ dom vol ↔ ( ∪ ran 𝐹 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) ) |
| 100 |
11 98 99
|
sylanbrc |
⊢ ( 𝜑 → ∪ ran 𝐹 ∈ dom vol ) |