Step |
Hyp |
Ref |
Expression |
1 |
|
voliunlem.3 |
|- ( ph -> F : NN --> dom vol ) |
2 |
|
voliunlem.5 |
|- ( ph -> Disj_ i e. NN ( F ` i ) ) |
3 |
|
voliunlem.6 |
|- H = ( n e. NN |-> ( vol* ` ( x i^i ( F ` n ) ) ) ) |
4 |
1
|
frnd |
|- ( ph -> ran F C_ dom vol ) |
5 |
|
mblss |
|- ( x e. dom vol -> x C_ RR ) |
6 |
|
velpw |
|- ( x e. ~P RR <-> x C_ RR ) |
7 |
5 6
|
sylibr |
|- ( x e. dom vol -> x e. ~P RR ) |
8 |
7
|
ssriv |
|- dom vol C_ ~P RR |
9 |
4 8
|
sstrdi |
|- ( ph -> ran F C_ ~P RR ) |
10 |
|
sspwuni |
|- ( ran F C_ ~P RR <-> U. ran F C_ RR ) |
11 |
9 10
|
sylib |
|- ( ph -> U. ran F C_ RR ) |
12 |
|
elpwi |
|- ( x e. ~P RR -> x C_ RR ) |
13 |
|
inundif |
|- ( ( x i^i U. ran F ) u. ( x \ U. ran F ) ) = x |
14 |
13
|
fveq2i |
|- ( vol* ` ( ( x i^i U. ran F ) u. ( x \ U. ran F ) ) ) = ( vol* ` x ) |
15 |
|
inss1 |
|- ( x i^i U. ran F ) C_ x |
16 |
|
simp2 |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> x C_ RR ) |
17 |
15 16
|
sstrid |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( x i^i U. ran F ) C_ RR ) |
18 |
|
ovolsscl |
|- ( ( ( x i^i U. ran F ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i U. ran F ) ) e. RR ) |
19 |
15 18
|
mp3an1 |
|- ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i U. ran F ) ) e. RR ) |
20 |
19
|
3adant1 |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i U. ran F ) ) e. RR ) |
21 |
|
difss |
|- ( x \ U. ran F ) C_ x |
22 |
21 16
|
sstrid |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( x \ U. ran F ) C_ RR ) |
23 |
|
ovolsscl |
|- ( ( ( x \ U. ran F ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ U. ran F ) ) e. RR ) |
24 |
21 23
|
mp3an1 |
|- ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ U. ran F ) ) e. RR ) |
25 |
24
|
3adant1 |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ U. ran F ) ) e. RR ) |
26 |
|
ovolun |
|- ( ( ( ( x i^i U. ran F ) C_ RR /\ ( vol* ` ( x i^i U. ran F ) ) e. RR ) /\ ( ( x \ U. ran F ) C_ RR /\ ( vol* ` ( x \ U. ran F ) ) e. RR ) ) -> ( vol* ` ( ( x i^i U. ran F ) u. ( x \ U. ran F ) ) ) <_ ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) |
27 |
17 20 22 25 26
|
syl22anc |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( ( x i^i U. ran F ) u. ( x \ U. ran F ) ) ) <_ ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) |
28 |
14 27
|
eqbrtrrid |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) <_ ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) |
29 |
20
|
rexrd |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i U. ran F ) ) e. RR* ) |
30 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
31 |
|
1zzd |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> 1 e. ZZ ) |
32 |
|
fveq2 |
|- ( n = k -> ( F ` n ) = ( F ` k ) ) |
33 |
32
|
ineq2d |
|- ( n = k -> ( x i^i ( F ` n ) ) = ( x i^i ( F ` k ) ) ) |
34 |
33
|
fveq2d |
|- ( n = k -> ( vol* ` ( x i^i ( F ` n ) ) ) = ( vol* ` ( x i^i ( F ` k ) ) ) ) |
35 |
|
fvex |
|- ( vol* ` ( x i^i ( F ` k ) ) ) e. _V |
36 |
34 3 35
|
fvmpt |
|- ( k e. NN -> ( H ` k ) = ( vol* ` ( x i^i ( F ` k ) ) ) ) |
37 |
36
|
adantl |
|- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( H ` k ) = ( vol* ` ( x i^i ( F ` k ) ) ) ) |
38 |
|
inss1 |
|- ( x i^i ( F ` k ) ) C_ x |
39 |
|
ovolsscl |
|- ( ( ( x i^i ( F ` k ) ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( F ` k ) ) ) e. RR ) |
40 |
38 39
|
mp3an1 |
|- ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( F ` k ) ) ) e. RR ) |
41 |
40
|
3adant1 |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( F ` k ) ) ) e. RR ) |
42 |
41
|
adantr |
|- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( vol* ` ( x i^i ( F ` k ) ) ) e. RR ) |
43 |
37 42
|
eqeltrd |
|- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( H ` k ) e. RR ) |
44 |
30 31 43
|
serfre |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> seq 1 ( + , H ) : NN --> RR ) |
45 |
44
|
frnd |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ran seq 1 ( + , H ) C_ RR ) |
46 |
|
ressxr |
|- RR C_ RR* |
47 |
45 46
|
sstrdi |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ran seq 1 ( + , H ) C_ RR* ) |
48 |
|
supxrcl |
|- ( ran seq 1 ( + , H ) C_ RR* -> sup ( ran seq 1 ( + , H ) , RR* , < ) e. RR* ) |
49 |
47 48
|
syl |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> sup ( ran seq 1 ( + , H ) , RR* , < ) e. RR* ) |
50 |
|
simp3 |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) e. RR ) |
51 |
50 25
|
resubcld |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) e. RR ) |
52 |
51
|
rexrd |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) e. RR* ) |
53 |
|
iunin2 |
|- U_ n e. NN ( x i^i ( F ` n ) ) = ( x i^i U_ n e. NN ( F ` n ) ) |
54 |
|
ffn |
|- ( F : NN --> dom vol -> F Fn NN ) |
55 |
|
fniunfv |
|- ( F Fn NN -> U_ n e. NN ( F ` n ) = U. ran F ) |
56 |
1 54 55
|
3syl |
|- ( ph -> U_ n e. NN ( F ` n ) = U. ran F ) |
57 |
56
|
3ad2ant1 |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> U_ n e. NN ( F ` n ) = U. ran F ) |
58 |
57
|
ineq2d |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( x i^i U_ n e. NN ( F ` n ) ) = ( x i^i U. ran F ) ) |
59 |
53 58
|
eqtrid |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> U_ n e. NN ( x i^i ( F ` n ) ) = ( x i^i U. ran F ) ) |
60 |
59
|
fveq2d |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` U_ n e. NN ( x i^i ( F ` n ) ) ) = ( vol* ` ( x i^i U. ran F ) ) ) |
61 |
|
eqid |
|- seq 1 ( + , H ) = seq 1 ( + , H ) |
62 |
|
inss1 |
|- ( x i^i ( F ` n ) ) C_ x |
63 |
62 16
|
sstrid |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( x i^i ( F ` n ) ) C_ RR ) |
64 |
63
|
adantr |
|- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ n e. NN ) -> ( x i^i ( F ` n ) ) C_ RR ) |
65 |
|
ovolsscl |
|- ( ( ( x i^i ( F ` n ) ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( F ` n ) ) ) e. RR ) |
66 |
62 65
|
mp3an1 |
|- ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( F ` n ) ) ) e. RR ) |
67 |
66
|
3adant1 |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( F ` n ) ) ) e. RR ) |
68 |
67
|
adantr |
|- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ n e. NN ) -> ( vol* ` ( x i^i ( F ` n ) ) ) e. RR ) |
69 |
61 3 64 68
|
ovoliun |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` U_ n e. NN ( x i^i ( F ` n ) ) ) <_ sup ( ran seq 1 ( + , H ) , RR* , < ) ) |
70 |
60 69
|
eqbrtrrd |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i U. ran F ) ) <_ sup ( ran seq 1 ( + , H ) , RR* , < ) ) |
71 |
1
|
3ad2ant1 |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> F : NN --> dom vol ) |
72 |
2
|
3ad2ant1 |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> Disj_ i e. NN ( F ` i ) ) |
73 |
71 72 3 16 50
|
voliunlem1 |
|- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) |
74 |
44
|
ffvelrnda |
|- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( seq 1 ( + , H ) ` k ) e. RR ) |
75 |
25
|
adantr |
|- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( vol* ` ( x \ U. ran F ) ) e. RR ) |
76 |
|
simpl3 |
|- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( vol* ` x ) e. RR ) |
77 |
|
leaddsub |
|- ( ( ( seq 1 ( + , H ) ` k ) e. RR /\ ( vol* ` ( x \ U. ran F ) ) e. RR /\ ( vol* ` x ) e. RR ) -> ( ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) <-> ( seq 1 ( + , H ) ` k ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) |
78 |
74 75 76 77
|
syl3anc |
|- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) <-> ( seq 1 ( + , H ) ` k ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) |
79 |
73 78
|
mpbid |
|- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( seq 1 ( + , H ) ` k ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) |
80 |
79
|
ralrimiva |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> A. k e. NN ( seq 1 ( + , H ) ` k ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) |
81 |
|
ffn |
|- ( seq 1 ( + , H ) : NN --> RR -> seq 1 ( + , H ) Fn NN ) |
82 |
|
breq1 |
|- ( z = ( seq 1 ( + , H ) ` k ) -> ( z <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) <-> ( seq 1 ( + , H ) ` k ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) |
83 |
82
|
ralrn |
|- ( seq 1 ( + , H ) Fn NN -> ( A. z e. ran seq 1 ( + , H ) z <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) <-> A. k e. NN ( seq 1 ( + , H ) ` k ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) |
84 |
44 81 83
|
3syl |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( A. z e. ran seq 1 ( + , H ) z <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) <-> A. k e. NN ( seq 1 ( + , H ) ` k ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) |
85 |
80 84
|
mpbird |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> A. z e. ran seq 1 ( + , H ) z <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) |
86 |
|
supxrleub |
|- ( ( ran seq 1 ( + , H ) C_ RR* /\ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) e. RR* ) -> ( sup ( ran seq 1 ( + , H ) , RR* , < ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) <-> A. z e. ran seq 1 ( + , H ) z <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) |
87 |
47 52 86
|
syl2anc |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( sup ( ran seq 1 ( + , H ) , RR* , < ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) <-> A. z e. ran seq 1 ( + , H ) z <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) |
88 |
85 87
|
mpbird |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> sup ( ran seq 1 ( + , H ) , RR* , < ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) |
89 |
29 49 52 70 88
|
xrletrd |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i U. ran F ) ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) |
90 |
|
leaddsub |
|- ( ( ( vol* ` ( x i^i U. ran F ) ) e. RR /\ ( vol* ` ( x \ U. ran F ) ) e. RR /\ ( vol* ` x ) e. RR ) -> ( ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) <-> ( vol* ` ( x i^i U. ran F ) ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) |
91 |
20 25 50 90
|
syl3anc |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) <-> ( vol* ` ( x i^i U. ran F ) ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) |
92 |
89 91
|
mpbird |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) |
93 |
20 25
|
readdcld |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) e. RR ) |
94 |
50 93
|
letri3d |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` x ) = ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) <-> ( ( vol* ` x ) <_ ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) /\ ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) ) ) |
95 |
28 92 94
|
mpbir2and |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) |
96 |
95
|
3expia |
|- ( ( ph /\ x C_ RR ) -> ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) ) |
97 |
12 96
|
sylan2 |
|- ( ( ph /\ x e. ~P RR ) -> ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) ) |
98 |
97
|
ralrimiva |
|- ( ph -> A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) ) |
99 |
|
ismbl |
|- ( U. ran F e. dom vol <-> ( U. ran F C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) ) ) |
100 |
11 98 99
|
sylanbrc |
|- ( ph -> U. ran F e. dom vol ) |