Metamath Proof Explorer
		
		
		
		Description:  Positive integer ordering relation.  (Contributed by NM, 13-Aug-2001)
     (Proof shortened by Mario Carneiro, 16-May-2014)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | nnleltp1 | ⊢  ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  ≤  𝐵  ↔  𝐴  <  ( 𝐵  +  1 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnz | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℤ ) | 
						
							| 2 |  | nnz | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℤ ) | 
						
							| 3 |  | zleltp1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  ≤  𝐵  ↔  𝐴  <  ( 𝐵  +  1 ) ) ) | 
						
							| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  ≤  𝐵  ↔  𝐴  <  ( 𝐵  +  1 ) ) ) |