Metamath Proof Explorer
Description: Positive integer ordering relation. (Contributed by NM, 13-Aug-2001)
(Proof shortened by Mario Carneiro, 16-May-2014)
|
|
Ref |
Expression |
|
Assertion |
nnleltp1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 ≤ 𝐵 ↔ 𝐴 < ( 𝐵 + 1 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) |
2 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
3 |
|
zleltp1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ≤ 𝐵 ↔ 𝐴 < ( 𝐵 + 1 ) ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 ≤ 𝐵 ↔ 𝐴 < ( 𝐵 + 1 ) ) ) |