Metamath Proof Explorer


Theorem iundisj2f

Description: A disjoint union is disjoint. Cf. iundisj2 . (Contributed by Thierry Arnoux, 30-Dec-2016)

Ref Expression
Hypotheses iundisjf.1 𝑘 𝐴
iundisjf.2 𝑛 𝐵
iundisjf.3 ( 𝑛 = 𝑘𝐴 = 𝐵 )
Assertion iundisj2f Disj 𝑛 ∈ ℕ ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 )

Proof

Step Hyp Ref Expression
1 iundisjf.1 𝑘 𝐴
2 iundisjf.2 𝑛 𝐵
3 iundisjf.3 ( 𝑛 = 𝑘𝐴 = 𝐵 )
4 tru
5 eqeq12 ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( 𝑎 = 𝑏𝑥 = 𝑦 ) )
6 csbeq1 ( 𝑎 = 𝑥 𝑎 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) )
7 csbeq1 ( 𝑏 = 𝑦 𝑏 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) )
8 6 7 ineqan12d ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( 𝑎 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑏 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) )
9 8 eqeq1d ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( ( 𝑎 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑏 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ↔ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) )
10 5 9 orbi12d ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( ( 𝑎 = 𝑏 ∨ ( 𝑎 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑏 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ↔ ( 𝑥 = 𝑦 ∨ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) )
11 eqeq12 ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → ( 𝑎 = 𝑏𝑦 = 𝑥 ) )
12 equcom ( 𝑦 = 𝑥𝑥 = 𝑦 )
13 11 12 bitrdi ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → ( 𝑎 = 𝑏𝑥 = 𝑦 ) )
14 csbeq1 ( 𝑎 = 𝑦 𝑎 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) )
15 csbeq1 ( 𝑏 = 𝑥 𝑏 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) )
16 14 15 ineqan12d ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → ( 𝑎 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑏 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) )
17 incom ( 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) )
18 16 17 eqtrdi ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → ( 𝑎 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑏 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) )
19 18 eqeq1d ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → ( ( 𝑎 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑏 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ↔ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) )
20 13 19 orbi12d ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → ( ( 𝑎 = 𝑏 ∨ ( 𝑎 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑏 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ↔ ( 𝑥 = 𝑦 ∨ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) )
21 nnssre ℕ ⊆ ℝ
22 21 a1i ( ⊤ → ℕ ⊆ ℝ )
23 biidd ( ( ⊤ ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) → ( ( 𝑥 = 𝑦 ∨ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ↔ ( 𝑥 = 𝑦 ∨ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) )
24 nesym ( 𝑦𝑥 ↔ ¬ 𝑥 = 𝑦 )
25 nnre ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ )
26 nnre ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ )
27 id ( 𝑥𝑦𝑥𝑦 )
28 leltne ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥𝑦 ) → ( 𝑥 < 𝑦𝑦𝑥 ) )
29 25 26 27 28 syl3an ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦 ) → ( 𝑥 < 𝑦𝑦𝑥 ) )
30 vex 𝑥 ∈ V
31 nfcsb1v 𝑛 𝑥 / 𝑛 𝐴
32 nfcv 𝑛 ( 1 ..^ 𝑥 )
33 32 2 nfiun 𝑛 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵
34 31 33 nfdif 𝑛 ( 𝑥 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 )
35 csbeq1a ( 𝑛 = 𝑥𝐴 = 𝑥 / 𝑛 𝐴 )
36 oveq2 ( 𝑛 = 𝑥 → ( 1 ..^ 𝑛 ) = ( 1 ..^ 𝑥 ) )
37 36 iuneq1d ( 𝑛 = 𝑥 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 = 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 )
38 35 37 difeq12d ( 𝑛 = 𝑥 → ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( 𝑥 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) )
39 30 34 38 csbief 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( 𝑥 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 )
40 vex 𝑦 ∈ V
41 nfcsb1v 𝑛 𝑦 / 𝑛 𝐴
42 nfcv 𝑛 ( 1 ..^ 𝑦 )
43 42 2 nfiun 𝑛 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵
44 41 43 nfdif 𝑛 ( 𝑦 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 )
45 csbeq1a ( 𝑛 = 𝑦𝐴 = 𝑦 / 𝑛 𝐴 )
46 oveq2 ( 𝑛 = 𝑦 → ( 1 ..^ 𝑛 ) = ( 1 ..^ 𝑦 ) )
47 46 iuneq1d ( 𝑛 = 𝑦 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 = 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 )
48 45 47 difeq12d ( 𝑛 = 𝑦 → ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( 𝑦 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) )
49 40 44 48 csbief 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( 𝑦 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 )
50 39 49 ineq12i ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( ( 𝑥 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) ∩ ( 𝑦 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) )
51 simp1 ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℕ )
52 nnuz ℕ = ( ℤ ‘ 1 )
53 51 52 eleqtrdi ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( ℤ ‘ 1 ) )
54 simp2 ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℕ )
55 54 nnzd ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℤ )
56 simp3 ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑥 < 𝑦 )
57 elfzo2 ( 𝑥 ∈ ( 1 ..^ 𝑦 ) ↔ ( 𝑥 ∈ ( ℤ ‘ 1 ) ∧ 𝑦 ∈ ℤ ∧ 𝑥 < 𝑦 ) )
58 53 55 56 57 syl3anbrc ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( 1 ..^ 𝑦 ) )
59 nfcv 𝑘 ( 1 ..^ 𝑦 )
60 nfcv 𝑘 𝑥
61 60 1 nfcsbw 𝑘 𝑥 / 𝑛 𝐴
62 nfcv 𝑛 𝑘
63 62 2 3 csbhypf ( 𝑥 = 𝑘 𝑥 / 𝑛 𝐴 = 𝐵 )
64 63 equcoms ( 𝑘 = 𝑥 𝑥 / 𝑛 𝐴 = 𝐵 )
65 64 eqcomd ( 𝑘 = 𝑥𝐵 = 𝑥 / 𝑛 𝐴 )
66 59 60 61 65 ssiun2sf ( 𝑥 ∈ ( 1 ..^ 𝑦 ) → 𝑥 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 )
67 58 66 syl ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑥 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 )
68 67 ssdifssd ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ( 𝑥 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) ⊆ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 )
69 68 ssrind ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ( ( 𝑥 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) ∩ ( 𝑦 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) ⊆ ( 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( 𝑦 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) )
70 50 69 eqsstrid ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ⊆ ( 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( 𝑦 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) )
71 disjdif ( 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( 𝑦 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) = ∅
72 sseq0 ( ( ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ⊆ ( 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( 𝑦 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) ∧ ( 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( 𝑦 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) = ∅ ) → ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ )
73 70 71 72 sylancl ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ )
74 73 3expia ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 < 𝑦 → ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) )
75 74 3adant3 ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦 ) → ( 𝑥 < 𝑦 → ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) )
76 29 75 sylbird ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦 ) → ( 𝑦𝑥 → ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) )
77 24 76 syl5bir ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦 ) → ( ¬ 𝑥 = 𝑦 → ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) )
78 77 orrd ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦 ) → ( 𝑥 = 𝑦 ∨ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) )
79 78 adantl ( ( ⊤ ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦 ) ) → ( 𝑥 = 𝑦 ∨ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) )
80 10 20 22 23 79 wlogle ( ( ⊤ ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 = 𝑦 ∨ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) )
81 4 80 mpan ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 = 𝑦 ∨ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) )
82 81 rgen2 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ( 𝑥 = 𝑦 ∨ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ )
83 disjors ( Disj 𝑛 ∈ ℕ ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ↔ ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ( 𝑥 = 𝑦 ∨ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) )
84 82 83 mpbir Disj 𝑛 ∈ ℕ ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 )