Metamath Proof Explorer


Theorem disjrdx

Description: Re-index a disjunct collection statement. (Contributed by Thierry Arnoux, 7-Apr-2017)

Ref Expression
Hypotheses disjrdx.1 ( 𝜑𝐹 : 𝐴1-1-onto𝐶 )
disjrdx.2 ( ( 𝜑𝑦 = ( 𝐹𝑥 ) ) → 𝐷 = 𝐵 )
Assertion disjrdx ( 𝜑 → ( Disj 𝑥𝐴 𝐵Disj 𝑦𝐶 𝐷 ) )

Proof

Step Hyp Ref Expression
1 disjrdx.1 ( 𝜑𝐹 : 𝐴1-1-onto𝐶 )
2 disjrdx.2 ( ( 𝜑𝑦 = ( 𝐹𝑥 ) ) → 𝐷 = 𝐵 )
3 f1of ( 𝐹 : 𝐴1-1-onto𝐶𝐹 : 𝐴𝐶 )
4 1 3 syl ( 𝜑𝐹 : 𝐴𝐶 )
5 4 ffvelrnda ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) ∈ 𝐶 )
6 f1ofveu ( ( 𝐹 : 𝐴1-1-onto𝐶𝑦𝐶 ) → ∃! 𝑥𝐴 ( 𝐹𝑥 ) = 𝑦 )
7 1 6 sylan ( ( 𝜑𝑦𝐶 ) → ∃! 𝑥𝐴 ( 𝐹𝑥 ) = 𝑦 )
8 eqcom ( ( 𝐹𝑥 ) = 𝑦𝑦 = ( 𝐹𝑥 ) )
9 8 reubii ( ∃! 𝑥𝐴 ( 𝐹𝑥 ) = 𝑦 ↔ ∃! 𝑥𝐴 𝑦 = ( 𝐹𝑥 ) )
10 7 9 sylib ( ( 𝜑𝑦𝐶 ) → ∃! 𝑥𝐴 𝑦 = ( 𝐹𝑥 ) )
11 2 eleq2d ( ( 𝜑𝑦 = ( 𝐹𝑥 ) ) → ( 𝑧𝐷𝑧𝐵 ) )
12 5 10 11 rmoxfrd ( 𝜑 → ( ∃* 𝑦𝐶 𝑧𝐷 ↔ ∃* 𝑥𝐴 𝑧𝐵 ) )
13 12 bicomd ( 𝜑 → ( ∃* 𝑥𝐴 𝑧𝐵 ↔ ∃* 𝑦𝐶 𝑧𝐷 ) )
14 13 albidv ( 𝜑 → ( ∀ 𝑧 ∃* 𝑥𝐴 𝑧𝐵 ↔ ∀ 𝑧 ∃* 𝑦𝐶 𝑧𝐷 ) )
15 df-disj ( Disj 𝑥𝐴 𝐵 ↔ ∀ 𝑧 ∃* 𝑥𝐴 𝑧𝐵 )
16 df-disj ( Disj 𝑦𝐶 𝐷 ↔ ∀ 𝑧 ∃* 𝑦𝐶 𝑧𝐷 )
17 14 15 16 3bitr4g ( 𝜑 → ( Disj 𝑥𝐴 𝐵Disj 𝑦𝐶 𝐷 ) )