| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjrdx.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) |
| 2 |
|
disjrdx.2 |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝐷 = 𝐵 ) |
| 3 |
|
f1of |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐶 → 𝐹 : 𝐴 ⟶ 𝐶 ) |
| 4 |
1 3
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐶 ) |
| 5 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) |
| 6 |
|
f1ofveu |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ∃! 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
| 7 |
1 6
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ∃! 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
| 8 |
|
eqcom |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
| 9 |
8
|
reubii |
⊢ ( ∃! 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ ∃! 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
| 10 |
7 9
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ∃! 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
| 11 |
2
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → ( 𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐵 ) ) |
| 12 |
5 10 11
|
rmoxfrd |
⊢ ( 𝜑 → ( ∃* 𝑦 ∈ 𝐶 𝑧 ∈ 𝐷 ↔ ∃* 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) ) |
| 13 |
12
|
bicomd |
⊢ ( 𝜑 → ( ∃* 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃* 𝑦 ∈ 𝐶 𝑧 ∈ 𝐷 ) ) |
| 14 |
13
|
albidv |
⊢ ( 𝜑 → ( ∀ 𝑧 ∃* 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∀ 𝑧 ∃* 𝑦 ∈ 𝐶 𝑧 ∈ 𝐷 ) ) |
| 15 |
|
df-disj |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑧 ∃* 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) |
| 16 |
|
df-disj |
⊢ ( Disj 𝑦 ∈ 𝐶 𝐷 ↔ ∀ 𝑧 ∃* 𝑦 ∈ 𝐶 𝑧 ∈ 𝐷 ) |
| 17 |
14 15 16
|
3bitr4g |
⊢ ( 𝜑 → ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐶 𝐷 ) ) |