Step |
Hyp |
Ref |
Expression |
1 |
|
rmoxfrd.1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) |
2 |
|
rmoxfrd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
3 |
|
rmoxfrd.3 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) |
4 |
|
reurex |
⊢ ( ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
5 |
2 4
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
6 |
1 5 3
|
rexxfrd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 𝜓 ↔ ∃ 𝑦 ∈ 𝐶 𝜒 ) ) |
7 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐵 𝜓 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) |
8 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐶 𝜒 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ 𝜒 ) ) |
9 |
6 7 8
|
3bitr3g |
⊢ ( 𝜑 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ 𝜒 ) ) ) |
10 |
1 2 3
|
reuxfr1d |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ∃! 𝑦 ∈ 𝐶 𝜒 ) ) |
11 |
|
df-reu |
⊢ ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) |
12 |
|
df-reu |
⊢ ( ∃! 𝑦 ∈ 𝐶 𝜒 ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐶 ∧ 𝜒 ) ) |
13 |
10 11 12
|
3bitr3g |
⊢ ( 𝜑 → ( ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐶 ∧ 𝜒 ) ) ) |
14 |
9 13
|
imbi12d |
⊢ ( 𝜑 → ( ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) → ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ↔ ( ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ 𝜒 ) → ∃! 𝑦 ( 𝑦 ∈ 𝐶 ∧ 𝜒 ) ) ) ) |
15 |
|
moeu |
⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) → ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) |
16 |
|
moeu |
⊢ ( ∃* 𝑦 ( 𝑦 ∈ 𝐶 ∧ 𝜒 ) ↔ ( ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ 𝜒 ) → ∃! 𝑦 ( 𝑦 ∈ 𝐶 ∧ 𝜒 ) ) ) |
17 |
14 15 16
|
3bitr4g |
⊢ ( 𝜑 → ( ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ↔ ∃* 𝑦 ( 𝑦 ∈ 𝐶 ∧ 𝜒 ) ) ) |
18 |
|
df-rmo |
⊢ ( ∃* 𝑥 ∈ 𝐵 𝜓 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) |
19 |
|
df-rmo |
⊢ ( ∃* 𝑦 ∈ 𝐶 𝜒 ↔ ∃* 𝑦 ( 𝑦 ∈ 𝐶 ∧ 𝜒 ) ) |
20 |
17 18 19
|
3bitr4g |
⊢ ( 𝜑 → ( ∃* 𝑥 ∈ 𝐵 𝜓 ↔ ∃* 𝑦 ∈ 𝐶 𝜒 ) ) |