Metamath Proof Explorer


Theorem reubii

Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 22-Oct-1999)

Ref Expression
Hypothesis reubii.1 ( 𝜑𝜓 )
Assertion reubii ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 reubii.1 ( 𝜑𝜓 )
2 1 a1i ( 𝑥𝐴 → ( 𝜑𝜓 ) )
3 2 reubiia ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥𝐴 𝜓 )