Metamath Proof Explorer


Theorem disjrdx

Description: Re-index a disjunct collection statement. (Contributed by Thierry Arnoux, 7-Apr-2017)

Ref Expression
Hypotheses disjrdx.1 φF:A1-1 ontoC
disjrdx.2 φy=FxD=B
Assertion disjrdx φDisjxABDisjyCD

Proof

Step Hyp Ref Expression
1 disjrdx.1 φF:A1-1 ontoC
2 disjrdx.2 φy=FxD=B
3 f1of F:A1-1 ontoCF:AC
4 1 3 syl φF:AC
5 4 ffvelcdmda φxAFxC
6 f1ofveu F:A1-1 ontoCyC∃!xAFx=y
7 1 6 sylan φyC∃!xAFx=y
8 eqcom Fx=yy=Fx
9 8 reubii ∃!xAFx=y∃!xAy=Fx
10 7 9 sylib φyC∃!xAy=Fx
11 2 eleq2d φy=FxzDzB
12 5 10 11 rmoxfrd φ*yCzD*xAzB
13 12 bicomd φ*xAzB*yCzD
14 13 albidv φz*xAzBz*yCzD
15 df-disj DisjxABz*xAzB
16 df-disj DisjyCDz*yCzD
17 14 15 16 3bitr4g φDisjxABDisjyCD