| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1o0 |
|
| 2 |
|
eqidd |
|
| 3 |
|
dm0 |
|
| 4 |
3
|
a1i |
|
| 5 |
|
id |
|
| 6 |
2 4 5
|
f1oeq123d |
|
| 7 |
1 6
|
mpbiri |
|
| 8 |
|
fveq2 |
|
| 9 |
|
hash0 |
|
| 10 |
8 9
|
eqtrdi |
|
| 11 |
10
|
oveq1d |
|
| 12 |
|
0p1e1 |
|
| 13 |
11 12
|
eqtrdi |
|
| 14 |
13
|
oveq2d |
|
| 15 |
|
fzo0 |
|
| 16 |
14 15
|
eqtrdi |
|
| 17 |
4 16
|
eqtr4d |
|
| 18 |
17
|
olcd |
|
| 19 |
7 18
|
jca |
|
| 20 |
|
0ex |
|
| 21 |
|
id |
|
| 22 |
|
dmeq |
|
| 23 |
|
eqidd |
|
| 24 |
21 22 23
|
f1oeq123d |
|
| 25 |
22
|
eqeq1d |
|
| 26 |
22
|
eqeq1d |
|
| 27 |
25 26
|
orbi12d |
|
| 28 |
24 27
|
anbi12d |
|
| 29 |
20 28
|
spcev |
|
| 30 |
19 29
|
syl |
|
| 31 |
30
|
adantl |
|
| 32 |
|
f1odm |
|
| 33 |
32
|
f1oeq2d |
|
| 34 |
33
|
ibir |
|
| 35 |
34
|
adantl |
|
| 36 |
32
|
adantl |
|
| 37 |
|
simpl |
|
| 38 |
37
|
nnzd |
|
| 39 |
|
fzval3 |
|
| 40 |
38 39
|
syl |
|
| 41 |
36 40
|
eqtrd |
|
| 42 |
41
|
olcd |
|
| 43 |
35 42
|
jca |
|
| 44 |
43
|
ex |
|
| 45 |
44
|
eximdv |
|
| 46 |
45
|
imp |
|
| 47 |
46
|
adantl |
|
| 48 |
|
fz1f1o |
|
| 49 |
48
|
adantl |
|
| 50 |
31 47 49
|
mpjaodan |
|
| 51 |
|
isfinite |
|
| 52 |
51
|
notbii |
|
| 53 |
52
|
biimpi |
|
| 54 |
53
|
anim2i |
|
| 55 |
|
bren2 |
|
| 56 |
54 55
|
sylibr |
|
| 57 |
|
nnenom |
|
| 58 |
57
|
ensymi |
|
| 59 |
|
entr |
|
| 60 |
56 58 59
|
sylancl |
|
| 61 |
|
bren |
|
| 62 |
60 61
|
sylib |
|
| 63 |
|
f1oexbi |
|
| 64 |
62 63
|
sylib |
|
| 65 |
|
f1odm |
|
| 66 |
65
|
f1oeq2d |
|
| 67 |
66
|
ibir |
|
| 68 |
65
|
orcd |
|
| 69 |
67 68
|
jca |
|
| 70 |
69
|
eximi |
|
| 71 |
64 70
|
syl |
|
| 72 |
50 71
|
pm2.61dan |
|