| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chnwrd.1 |
|- ( ph -> C e. ( .< Chain A ) ) |
| 2 |
|
pfxchn.2 |
|- ( ph -> L e. ( 0 ... ( # ` C ) ) ) |
| 3 |
1
|
chnwrd |
|- ( ph -> C e. Word A ) |
| 4 |
|
pfxcl |
|- ( C e. Word A -> ( C prefix L ) e. Word A ) |
| 5 |
3 4
|
syl |
|- ( ph -> ( C prefix L ) e. Word A ) |
| 6 |
1
|
adantr |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> C e. ( .< Chain A ) ) |
| 7 |
2
|
adantr |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> L e. ( 0 ... ( # ` C ) ) ) |
| 8 |
|
elfzuz3 |
|- ( L e. ( 0 ... ( # ` C ) ) -> ( # ` C ) e. ( ZZ>= ` L ) ) |
| 9 |
|
fzoss2 |
|- ( ( # ` C ) e. ( ZZ>= ` L ) -> ( 0 ..^ L ) C_ ( 0 ..^ ( # ` C ) ) ) |
| 10 |
7 8 9
|
3syl |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> ( 0 ..^ L ) C_ ( 0 ..^ ( # ` C ) ) ) |
| 11 |
|
simpr |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> n e. ( dom ( C prefix L ) \ { 0 } ) ) |
| 12 |
11
|
eldifad |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> n e. dom ( C prefix L ) ) |
| 13 |
3
|
adantr |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> C e. Word A ) |
| 14 |
|
pfxlen |
|- ( ( C e. Word A /\ L e. ( 0 ... ( # ` C ) ) ) -> ( # ` ( C prefix L ) ) = L ) |
| 15 |
13 7 14
|
syl2anc |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> ( # ` ( C prefix L ) ) = L ) |
| 16 |
15
|
eqcomd |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> L = ( # ` ( C prefix L ) ) ) |
| 17 |
5
|
adantr |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> ( C prefix L ) e. Word A ) |
| 18 |
16 17
|
wrdfd |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> ( C prefix L ) : ( 0 ..^ L ) --> A ) |
| 19 |
18
|
fdmd |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> dom ( C prefix L ) = ( 0 ..^ L ) ) |
| 20 |
12 19
|
eleqtrd |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> n e. ( 0 ..^ L ) ) |
| 21 |
10 20
|
sseldd |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> n e. ( 0 ..^ ( # ` C ) ) ) |
| 22 |
|
eqidd |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> ( # ` C ) = ( # ` C ) ) |
| 23 |
22 13
|
wrdfd |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> C : ( 0 ..^ ( # ` C ) ) --> A ) |
| 24 |
23
|
fdmd |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> dom C = ( 0 ..^ ( # ` C ) ) ) |
| 25 |
21 24
|
eleqtrrd |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> n e. dom C ) |
| 26 |
|
eldifsni |
|- ( n e. ( dom ( C prefix L ) \ { 0 } ) -> n =/= 0 ) |
| 27 |
11 26
|
syl |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> n =/= 0 ) |
| 28 |
25 27
|
eldifsnd |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> n e. ( dom C \ { 0 } ) ) |
| 29 |
6 28
|
chnltm1 |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> ( C ` ( n - 1 ) ) .< ( C ` n ) ) |
| 30 |
7
|
elfzelzd |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> L e. ZZ ) |
| 31 |
|
fzossrbm1 |
|- ( L e. ZZ -> ( 0 ..^ ( L - 1 ) ) C_ ( 0 ..^ L ) ) |
| 32 |
30 31
|
syl |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> ( 0 ..^ ( L - 1 ) ) C_ ( 0 ..^ L ) ) |
| 33 |
|
fzom1ne1 |
|- ( ( n e. ( 0 ..^ L ) /\ n =/= 0 ) -> ( n - 1 ) e. ( 0 ..^ ( L - 1 ) ) ) |
| 34 |
20 27 33
|
syl2anc |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> ( n - 1 ) e. ( 0 ..^ ( L - 1 ) ) ) |
| 35 |
32 34
|
sseldd |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> ( n - 1 ) e. ( 0 ..^ L ) ) |
| 36 |
|
pfxfv |
|- ( ( C e. Word A /\ L e. ( 0 ... ( # ` C ) ) /\ ( n - 1 ) e. ( 0 ..^ L ) ) -> ( ( C prefix L ) ` ( n - 1 ) ) = ( C ` ( n - 1 ) ) ) |
| 37 |
13 7 35 36
|
syl3anc |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> ( ( C prefix L ) ` ( n - 1 ) ) = ( C ` ( n - 1 ) ) ) |
| 38 |
|
pfxfv |
|- ( ( C e. Word A /\ L e. ( 0 ... ( # ` C ) ) /\ n e. ( 0 ..^ L ) ) -> ( ( C prefix L ) ` n ) = ( C ` n ) ) |
| 39 |
13 7 20 38
|
syl3anc |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> ( ( C prefix L ) ` n ) = ( C ` n ) ) |
| 40 |
29 37 39
|
3brtr4d |
|- ( ( ph /\ n e. ( dom ( C prefix L ) \ { 0 } ) ) -> ( ( C prefix L ) ` ( n - 1 ) ) .< ( ( C prefix L ) ` n ) ) |
| 41 |
40
|
ralrimiva |
|- ( ph -> A. n e. ( dom ( C prefix L ) \ { 0 } ) ( ( C prefix L ) ` ( n - 1 ) ) .< ( ( C prefix L ) ` n ) ) |
| 42 |
|
ischn |
|- ( ( C prefix L ) e. ( .< Chain A ) <-> ( ( C prefix L ) e. Word A /\ A. n e. ( dom ( C prefix L ) \ { 0 } ) ( ( C prefix L ) ` ( n - 1 ) ) .< ( ( C prefix L ) ` n ) ) ) |
| 43 |
5 41 42
|
sylanbrc |
|- ( ph -> ( C prefix L ) e. ( .< Chain A ) ) |