Metamath Proof Explorer


Theorem chnwrd

Description: A chain is an ordered sequence, i.e. a word. (Contributed by Thierry Arnoux, 19-Jun-2025)

Ref Expression
Hypothesis chnwrd.1
|- ( ph -> C e. ( .< Chain A ) )
Assertion chnwrd
|- ( ph -> C e. Word A )

Proof

Step Hyp Ref Expression
1 chnwrd.1
 |-  ( ph -> C e. ( .< Chain A ) )
2 ischn
 |-  ( C e. ( .< Chain A ) <-> ( C e. Word A /\ A. n e. ( dom C \ { 0 } ) ( C ` ( n - 1 ) ) .< ( C ` n ) ) )
3 2 simplbi
 |-  ( C e. ( .< Chain A ) -> C e. Word A )
4 1 3 syl
 |-  ( ph -> C e. Word A )