Description: A word is a zero-based sequence with a recoverable upper limit, deduction version. (Contributed by Thierry Arnoux, 22-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wrdfd.n | |- ( ph -> N = ( # ` W ) ) |
|
wrdfd.w | |- ( ph -> W e. Word S ) |
||
Assertion | wrdfd | |- ( ph -> W : ( 0 ..^ N ) --> S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrdfd.n | |- ( ph -> N = ( # ` W ) ) |
|
2 | wrdfd.w | |- ( ph -> W e. Word S ) |
|
3 | wrdf | |- ( W e. Word S -> W : ( 0 ..^ ( # ` W ) ) --> S ) |
|
4 | 2 3 | syl | |- ( ph -> W : ( 0 ..^ ( # ` W ) ) --> S ) |
5 | 1 | oveq2d | |- ( ph -> ( 0 ..^ N ) = ( 0 ..^ ( # ` W ) ) ) |
6 | 5 | feq2d | |- ( ph -> ( W : ( 0 ..^ N ) --> S <-> W : ( 0 ..^ ( # ` W ) ) --> S ) ) |
7 | 4 6 | mpbird | |- ( ph -> W : ( 0 ..^ N ) --> S ) |