Description: A word is a zero-based sequence with a recoverable upper limit, deduction version. (Contributed by Thierry Arnoux, 22-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wrdfd.n | ⊢ ( 𝜑 → 𝑁 = ( ♯ ‘ 𝑊 ) ) | |
| wrdfd.w | ⊢ ( 𝜑 → 𝑊 ∈ Word 𝑆 ) | ||
| Assertion | wrdfd | ⊢ ( 𝜑 → 𝑊 : ( 0 ..^ 𝑁 ) ⟶ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdfd.n | ⊢ ( 𝜑 → 𝑁 = ( ♯ ‘ 𝑊 ) ) | |
| 2 | wrdfd.w | ⊢ ( 𝜑 → 𝑊 ∈ Word 𝑆 ) | |
| 3 | wrdf | ⊢ ( 𝑊 ∈ Word 𝑆 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝜑 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 ) |
| 5 | 1 | oveq2d | ⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 6 | 5 | feq2d | ⊢ ( 𝜑 → ( 𝑊 : ( 0 ..^ 𝑁 ) ⟶ 𝑆 ↔ 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 ) ) |
| 7 | 4 6 | mpbird | ⊢ ( 𝜑 → 𝑊 : ( 0 ..^ 𝑁 ) ⟶ 𝑆 ) |