Metamath Proof Explorer


Theorem salgencld

Description: SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses salgencld.1
|- ( ph -> X e. V )
salgencld.2
|- S = ( SalGen ` X )
Assertion salgencld
|- ( ph -> S e. SAlg )

Proof

Step Hyp Ref Expression
1 salgencld.1
 |-  ( ph -> X e. V )
2 salgencld.2
 |-  S = ( SalGen ` X )
3 salgencl
 |-  ( X e. V -> ( SalGen ` X ) e. SAlg )
4 1 3 syl
 |-  ( ph -> ( SalGen ` X ) e. SAlg )
5 2 4 eqeltrid
 |-  ( ph -> S e. SAlg )