Metamath Proof Explorer
Description: SalGen actually generates a sigma-algebra. (Contributed by Glauco
Siliprandi, 26-Jun-2021)
|
|
Ref |
Expression |
|
Hypotheses |
salgencld.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
|
|
salgencld.2 |
⊢ 𝑆 = ( SalGen ‘ 𝑋 ) |
|
Assertion |
salgencld |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
salgencld.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
2 |
|
salgencld.2 |
⊢ 𝑆 = ( SalGen ‘ 𝑋 ) |
3 |
|
salgencl |
⊢ ( 𝑋 ∈ 𝑉 → ( SalGen ‘ 𝑋 ) ∈ SAlg ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → ( SalGen ‘ 𝑋 ) ∈ SAlg ) |
5 |
2 4
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |