Metamath Proof Explorer


Theorem salgencld

Description: SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses salgencld.1 ( 𝜑𝑋𝑉 )
salgencld.2 𝑆 = ( SalGen ‘ 𝑋 )
Assertion salgencld ( 𝜑𝑆 ∈ SAlg )

Proof

Step Hyp Ref Expression
1 salgencld.1 ( 𝜑𝑋𝑉 )
2 salgencld.2 𝑆 = ( SalGen ‘ 𝑋 )
3 salgencl ( 𝑋𝑉 → ( SalGen ‘ 𝑋 ) ∈ SAlg )
4 1 3 syl ( 𝜑 → ( SalGen ‘ 𝑋 ) ∈ SAlg )
5 2 4 eqeltrid ( 𝜑𝑆 ∈ SAlg )