Metamath Proof Explorer


Theorem salgencl

Description: SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Assertion salgencl ( 𝑋𝑉 → ( SalGen ‘ 𝑋 ) ∈ SAlg )

Proof

Step Hyp Ref Expression
1 salgenval ( 𝑋𝑉 → ( SalGen ‘ 𝑋 ) = { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } )
2 ssrab2 { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ⊆ SAlg
3 2 a1i ( 𝑋𝑉 → { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ⊆ SAlg )
4 salgenn0 ( 𝑋𝑉 → { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ≠ ∅ )
5 unieq ( 𝑠 = 𝑡 𝑠 = 𝑡 )
6 5 eqeq1d ( 𝑠 = 𝑡 → ( 𝑠 = 𝑋 𝑡 = 𝑋 ) )
7 sseq2 ( 𝑠 = 𝑡 → ( 𝑋𝑠𝑋𝑡 ) )
8 6 7 anbi12d ( 𝑠 = 𝑡 → ( ( 𝑠 = 𝑋𝑋𝑠 ) ↔ ( 𝑡 = 𝑋𝑋𝑡 ) ) )
9 8 elrab ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ↔ ( 𝑡 ∈ SAlg ∧ ( 𝑡 = 𝑋𝑋𝑡 ) ) )
10 9 biimpi ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } → ( 𝑡 ∈ SAlg ∧ ( 𝑡 = 𝑋𝑋𝑡 ) ) )
11 10 simprld ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } → 𝑡 = 𝑋 )
12 11 adantl ( ( 𝑋𝑉𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ) → 𝑡 = 𝑋 )
13 3 4 12 intsal ( 𝑋𝑉 { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ∈ SAlg )
14 1 13 eqeltrd ( 𝑋𝑉 → ( SalGen ‘ 𝑋 ) ∈ SAlg )