Step |
Hyp |
Ref |
Expression |
1 |
|
salgenval |
⊢ ( 𝑋 ∈ 𝑉 → ( SalGen ‘ 𝑋 ) = ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) |
2 |
|
ssrab2 |
⊢ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ⊆ SAlg |
3 |
2
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ⊆ SAlg ) |
4 |
|
salgenn0 |
⊢ ( 𝑋 ∈ 𝑉 → { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ≠ ∅ ) |
5 |
|
unieq |
⊢ ( 𝑠 = 𝑡 → ∪ 𝑠 = ∪ 𝑡 ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑠 = 𝑡 → ( ∪ 𝑠 = ∪ 𝑋 ↔ ∪ 𝑡 = ∪ 𝑋 ) ) |
7 |
|
sseq2 |
⊢ ( 𝑠 = 𝑡 → ( 𝑋 ⊆ 𝑠 ↔ 𝑋 ⊆ 𝑡 ) ) |
8 |
6 7
|
anbi12d |
⊢ ( 𝑠 = 𝑡 → ( ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) ↔ ( ∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡 ) ) ) |
9 |
8
|
elrab |
⊢ ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ↔ ( 𝑡 ∈ SAlg ∧ ( ∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡 ) ) ) |
10 |
9
|
biimpi |
⊢ ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } → ( 𝑡 ∈ SAlg ∧ ( ∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡 ) ) ) |
11 |
10
|
simprld |
⊢ ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } → ∪ 𝑡 = ∪ 𝑋 ) |
12 |
11
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) → ∪ 𝑡 = ∪ 𝑋 ) |
13 |
3 4 12
|
intsal |
⊢ ( 𝑋 ∈ 𝑉 → ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ∈ SAlg ) |
14 |
1 13
|
eqeltrd |
⊢ ( 𝑋 ∈ 𝑉 → ( SalGen ‘ 𝑋 ) ∈ SAlg ) |