| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issald.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 2 |  | issald.z | ⊢ ( 𝜑  →  ∅  ∈  𝑆 ) | 
						
							| 3 |  | issald.x | ⊢ 𝑋  =  ∪  𝑆 | 
						
							| 4 |  | issald.d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( 𝑋  ∖  𝑦 )  ∈  𝑆 ) | 
						
							| 5 |  | issald.u | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝒫  𝑆  ∧  𝑦  ≼  ω )  →  ∪  𝑦  ∈  𝑆 ) | 
						
							| 6 | 3 | eqcomi | ⊢ ∪  𝑆  =  𝑋 | 
						
							| 7 | 6 | difeq1i | ⊢ ( ∪  𝑆  ∖  𝑦 )  =  ( 𝑋  ∖  𝑦 ) | 
						
							| 8 | 7 4 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ∪  𝑆  ∖  𝑦 )  ∈  𝑆 ) | 
						
							| 9 | 8 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝑆 ( ∪  𝑆  ∖  𝑦 )  ∈  𝑆 ) | 
						
							| 10 | 5 | 3expia | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝒫  𝑆 )  →  ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝑆 ) ) | 
						
							| 11 | 10 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝒫  𝑆 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝑆 ) ) | 
						
							| 12 |  | issal | ⊢ ( 𝑆  ∈  𝑉  →  ( 𝑆  ∈  SAlg  ↔  ( ∅  ∈  𝑆  ∧  ∀ 𝑦  ∈  𝑆 ( ∪  𝑆  ∖  𝑦 )  ∈  𝑆  ∧  ∀ 𝑦  ∈  𝒫  𝑆 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝑆 ) ) ) ) | 
						
							| 13 | 1 12 | syl | ⊢ ( 𝜑  →  ( 𝑆  ∈  SAlg  ↔  ( ∅  ∈  𝑆  ∧  ∀ 𝑦  ∈  𝑆 ( ∪  𝑆  ∖  𝑦 )  ∈  𝑆  ∧  ∀ 𝑦  ∈  𝒫  𝑆 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝑆 ) ) ) ) | 
						
							| 14 | 2 9 11 13 | mpbir3and | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) |