| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issald.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
| 2 |
|
issald.z |
⊢ ( 𝜑 → ∅ ∈ 𝑆 ) |
| 3 |
|
issald.x |
⊢ 𝑋 = ∪ 𝑆 |
| 4 |
|
issald.d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑋 ∖ 𝑦 ) ∈ 𝑆 ) |
| 5 |
|
issald.u |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ) → ∪ 𝑦 ∈ 𝑆 ) |
| 6 |
3
|
eqcomi |
⊢ ∪ 𝑆 = 𝑋 |
| 7 |
6
|
difeq1i |
⊢ ( ∪ 𝑆 ∖ 𝑦 ) = ( 𝑋 ∖ 𝑦 ) |
| 8 |
7 4
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ∪ 𝑆 ∖ 𝑦 ) ∈ 𝑆 ) |
| 9 |
8
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑦 ) ∈ 𝑆 ) |
| 10 |
5
|
3expia |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ) → ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆 ) ) |
| 11 |
10
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆 ) ) |
| 12 |
|
issal |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 ∈ SAlg ↔ ( ∅ ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆 ) ) ) ) |
| 13 |
1 12
|
syl |
⊢ ( 𝜑 → ( 𝑆 ∈ SAlg ↔ ( ∅ ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆 ) ) ) ) |
| 14 |
2 9 11 13
|
mpbir3and |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |