Metamath Proof Explorer


Theorem issald

Description: Sufficient condition to prove that S is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses issald.s ( 𝜑𝑆𝑉 )
issald.z ( 𝜑 → ∅ ∈ 𝑆 )
issald.x 𝑋 = 𝑆
issald.d ( ( 𝜑𝑦𝑆 ) → ( 𝑋𝑦 ) ∈ 𝑆 )
issald.u ( ( 𝜑𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ) → 𝑦𝑆 )
Assertion issald ( 𝜑𝑆 ∈ SAlg )

Proof

Step Hyp Ref Expression
1 issald.s ( 𝜑𝑆𝑉 )
2 issald.z ( 𝜑 → ∅ ∈ 𝑆 )
3 issald.x 𝑋 = 𝑆
4 issald.d ( ( 𝜑𝑦𝑆 ) → ( 𝑋𝑦 ) ∈ 𝑆 )
5 issald.u ( ( 𝜑𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ) → 𝑦𝑆 )
6 3 eqcomi 𝑆 = 𝑋
7 6 difeq1i ( 𝑆𝑦 ) = ( 𝑋𝑦 )
8 7 4 eqeltrid ( ( 𝜑𝑦𝑆 ) → ( 𝑆𝑦 ) ∈ 𝑆 )
9 8 ralrimiva ( 𝜑 → ∀ 𝑦𝑆 ( 𝑆𝑦 ) ∈ 𝑆 )
10 5 3expia ( ( 𝜑𝑦 ∈ 𝒫 𝑆 ) → ( 𝑦 ≼ ω → 𝑦𝑆 ) )
11 10 ralrimiva ( 𝜑 → ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → 𝑦𝑆 ) )
12 issal ( 𝑆𝑉 → ( 𝑆 ∈ SAlg ↔ ( ∅ ∈ 𝑆 ∧ ∀ 𝑦𝑆 ( 𝑆𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → 𝑦𝑆 ) ) ) )
13 1 12 syl ( 𝜑 → ( 𝑆 ∈ SAlg ↔ ( ∅ ∈ 𝑆 ∧ ∀ 𝑦𝑆 ( 𝑆𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → 𝑦𝑆 ) ) ) )
14 2 9 11 13 mpbir3and ( 𝜑𝑆 ∈ SAlg )