| Step |
Hyp |
Ref |
Expression |
| 1 |
|
salexct.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
salexct.b |
⊢ 𝑆 = { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) } |
| 3 |
1
|
pwexd |
⊢ ( 𝜑 → 𝒫 𝐴 ∈ V ) |
| 4 |
|
rabexg |
⊢ ( 𝒫 𝐴 ∈ V → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) } ∈ V ) |
| 5 |
3 4
|
syl |
⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) } ∈ V ) |
| 6 |
2 5
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 7 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝐴 |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → ∅ ∈ 𝒫 𝐴 ) |
| 9 |
|
0fi |
⊢ ∅ ∈ Fin |
| 10 |
|
fict |
⊢ ( ∅ ∈ Fin → ∅ ≼ ω ) |
| 11 |
9 10
|
ax-mp |
⊢ ∅ ≼ ω |
| 12 |
11
|
orci |
⊢ ( ∅ ≼ ω ∨ ( 𝐴 ∖ ∅ ) ≼ ω ) |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → ( ∅ ≼ ω ∨ ( 𝐴 ∖ ∅ ) ≼ ω ) ) |
| 14 |
8 13
|
jca |
⊢ ( 𝜑 → ( ∅ ∈ 𝒫 𝐴 ∧ ( ∅ ≼ ω ∨ ( 𝐴 ∖ ∅ ) ≼ ω ) ) ) |
| 15 |
|
breq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ≼ ω ↔ ∅ ≼ ω ) ) |
| 16 |
|
difeq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ ∅ ) ) |
| 17 |
16
|
breq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ↔ ( 𝐴 ∖ ∅ ) ≼ ω ) ) |
| 18 |
15 17
|
orbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) ↔ ( ∅ ≼ ω ∨ ( 𝐴 ∖ ∅ ) ≼ ω ) ) ) |
| 19 |
18 2
|
elrab2 |
⊢ ( ∅ ∈ 𝑆 ↔ ( ∅ ∈ 𝒫 𝐴 ∧ ( ∅ ≼ ω ∨ ( 𝐴 ∖ ∅ ) ≼ ω ) ) ) |
| 20 |
14 19
|
sylibr |
⊢ ( 𝜑 → ∅ ∈ 𝑆 ) |
| 21 |
|
snidg |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ { 𝑦 } ) |
| 22 |
|
snelpwi |
⊢ ( 𝑦 ∈ 𝐴 → { 𝑦 } ∈ 𝒫 𝐴 ) |
| 23 |
|
snfi |
⊢ { 𝑦 } ∈ Fin |
| 24 |
|
fict |
⊢ ( { 𝑦 } ∈ Fin → { 𝑦 } ≼ ω ) |
| 25 |
23 24
|
ax-mp |
⊢ { 𝑦 } ≼ ω |
| 26 |
25
|
orci |
⊢ ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) |
| 27 |
26
|
a1i |
⊢ ( 𝑦 ∈ 𝐴 → ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) |
| 28 |
22 27
|
jca |
⊢ ( 𝑦 ∈ 𝐴 → ( { 𝑦 } ∈ 𝒫 𝐴 ∧ ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) ) |
| 29 |
|
breq1 |
⊢ ( 𝑥 = { 𝑦 } → ( 𝑥 ≼ ω ↔ { 𝑦 } ≼ ω ) ) |
| 30 |
|
difeq2 |
⊢ ( 𝑥 = { 𝑦 } → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ { 𝑦 } ) ) |
| 31 |
30
|
breq1d |
⊢ ( 𝑥 = { 𝑦 } → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ↔ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) |
| 32 |
29 31
|
orbi12d |
⊢ ( 𝑥 = { 𝑦 } → ( ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) ↔ ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) ) |
| 33 |
32 2
|
elrab2 |
⊢ ( { 𝑦 } ∈ 𝑆 ↔ ( { 𝑦 } ∈ 𝒫 𝐴 ∧ ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) ) |
| 34 |
28 33
|
sylibr |
⊢ ( 𝑦 ∈ 𝐴 → { 𝑦 } ∈ 𝑆 ) |
| 35 |
|
elunii |
⊢ ( ( 𝑦 ∈ { 𝑦 } ∧ { 𝑦 } ∈ 𝑆 ) → 𝑦 ∈ ∪ 𝑆 ) |
| 36 |
21 34 35
|
syl2anc |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ∪ 𝑆 ) |
| 37 |
36
|
rgen |
⊢ ∀ 𝑦 ∈ 𝐴 𝑦 ∈ ∪ 𝑆 |
| 38 |
|
dfss3 |
⊢ ( 𝐴 ⊆ ∪ 𝑆 ↔ ∀ 𝑦 ∈ 𝐴 𝑦 ∈ ∪ 𝑆 ) |
| 39 |
37 38
|
mpbir |
⊢ 𝐴 ⊆ ∪ 𝑆 |
| 40 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) } ⊆ 𝒫 𝐴 |
| 41 |
2 40
|
eqsstri |
⊢ 𝑆 ⊆ 𝒫 𝐴 |
| 42 |
41
|
unissi |
⊢ ∪ 𝑆 ⊆ ∪ 𝒫 𝐴 |
| 43 |
|
unipw |
⊢ ∪ 𝒫 𝐴 = 𝐴 |
| 44 |
42 43
|
sseqtri |
⊢ ∪ 𝑆 ⊆ 𝐴 |
| 45 |
39 44
|
eqssi |
⊢ 𝐴 = ∪ 𝑆 |
| 46 |
|
difssd |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝑥 ) ⊆ 𝐴 ) |
| 47 |
1 46
|
ssexd |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝑥 ) ∈ V ) |
| 48 |
|
elpwg |
⊢ ( ( 𝐴 ∖ 𝑥 ) ∈ V → ( ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ 𝑥 ) ⊆ 𝐴 ) ) |
| 49 |
47 48
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ 𝑥 ) ⊆ 𝐴 ) ) |
| 50 |
46 49
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ) |
| 51 |
50
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑥 ≼ ω ) → ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ) |
| 52 |
41
|
sseli |
⊢ ( 𝑥 ∈ 𝑆 → 𝑥 ∈ 𝒫 𝐴 ) |
| 53 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴 ) |
| 54 |
52 53
|
syl |
⊢ ( 𝑥 ∈ 𝑆 → 𝑥 ⊆ 𝐴 ) |
| 55 |
|
dfss4 |
⊢ ( 𝑥 ⊆ 𝐴 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) = 𝑥 ) |
| 56 |
54 55
|
sylib |
⊢ ( 𝑥 ∈ 𝑆 → ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) = 𝑥 ) |
| 57 |
56
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑥 ≼ ω ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) = 𝑥 ) |
| 58 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑥 ≼ ω ) → 𝑥 ≼ ω ) |
| 59 |
57 58
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑥 ≼ ω ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ≼ ω ) |
| 60 |
|
olc |
⊢ ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ≼ ω → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ≼ ω ) ) |
| 61 |
59 60
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑥 ≼ ω ) → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ≼ ω ) ) |
| 62 |
51 61
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑥 ≼ ω ) → ( ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ≼ ω ) ) ) |
| 63 |
|
breq1 |
⊢ ( 𝑦 = ( 𝐴 ∖ 𝑥 ) → ( 𝑦 ≼ ω ↔ ( 𝐴 ∖ 𝑥 ) ≼ ω ) ) |
| 64 |
|
difeq2 |
⊢ ( 𝑦 = ( 𝐴 ∖ 𝑥 ) → ( 𝐴 ∖ 𝑦 ) = ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ) |
| 65 |
64
|
breq1d |
⊢ ( 𝑦 = ( 𝐴 ∖ 𝑥 ) → ( ( 𝐴 ∖ 𝑦 ) ≼ ω ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ≼ ω ) ) |
| 66 |
63 65
|
orbi12d |
⊢ ( 𝑦 = ( 𝐴 ∖ 𝑥 ) → ( ( 𝑦 ≼ ω ∨ ( 𝐴 ∖ 𝑦 ) ≼ ω ) ↔ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ≼ ω ) ) ) |
| 67 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≼ ω ↔ 𝑦 ≼ ω ) ) |
| 68 |
|
difeq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑦 ) ) |
| 69 |
68
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ↔ ( 𝐴 ∖ 𝑦 ) ≼ ω ) ) |
| 70 |
67 69
|
orbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) ↔ ( 𝑦 ≼ ω ∨ ( 𝐴 ∖ 𝑦 ) ≼ ω ) ) ) |
| 71 |
70
|
cbvrabv |
⊢ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) } = { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑦 ≼ ω ∨ ( 𝐴 ∖ 𝑦 ) ≼ ω ) } |
| 72 |
2 71
|
eqtri |
⊢ 𝑆 = { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑦 ≼ ω ∨ ( 𝐴 ∖ 𝑦 ) ≼ ω ) } |
| 73 |
66 72
|
elrab2 |
⊢ ( ( 𝐴 ∖ 𝑥 ) ∈ 𝑆 ↔ ( ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ≼ ω ) ) ) |
| 74 |
62 73
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑥 ≼ ω ) → ( 𝐴 ∖ 𝑥 ) ∈ 𝑆 ) |
| 75 |
50
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ ¬ 𝑥 ≼ ω ) → ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ) |
| 76 |
2
|
reqabi |
⊢ ( 𝑥 ∈ 𝑆 ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) ) ) |
| 77 |
76
|
biimpi |
⊢ ( 𝑥 ∈ 𝑆 → ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) ) ) |
| 78 |
77
|
simprd |
⊢ ( 𝑥 ∈ 𝑆 → ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) ) |
| 79 |
78
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) ) |
| 80 |
79
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ ¬ 𝑥 ≼ ω ) → ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) ) |
| 81 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ ¬ 𝑥 ≼ ω ) → ¬ 𝑥 ≼ ω ) |
| 82 |
|
pm2.53 |
⊢ ( ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) → ( ¬ 𝑥 ≼ ω → ( 𝐴 ∖ 𝑥 ) ≼ ω ) ) |
| 83 |
80 81 82
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ ¬ 𝑥 ≼ ω ) → ( 𝐴 ∖ 𝑥 ) ≼ ω ) |
| 84 |
|
orc |
⊢ ( ( 𝐴 ∖ 𝑥 ) ≼ ω → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ≼ ω ) ) |
| 85 |
83 84
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ ¬ 𝑥 ≼ ω ) → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ≼ ω ) ) |
| 86 |
75 85
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ ¬ 𝑥 ≼ ω ) → ( ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ≼ ω ) ) ) |
| 87 |
86 73
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ ¬ 𝑥 ≼ ω ) → ( 𝐴 ∖ 𝑥 ) ∈ 𝑆 ) |
| 88 |
74 87
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝐴 ∖ 𝑥 ) ∈ 𝑆 ) |
| 89 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝑆 → 𝑥 ⊆ 𝑆 ) |
| 90 |
89
|
adantr |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ⊆ 𝑆 ) |
| 91 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) |
| 92 |
90 91
|
sseldd |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑆 ) |
| 93 |
41
|
sseli |
⊢ ( 𝑦 ∈ 𝑆 → 𝑦 ∈ 𝒫 𝐴 ) |
| 94 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝐴 → 𝑦 ⊆ 𝐴 ) |
| 95 |
93 94
|
syl |
⊢ ( 𝑦 ∈ 𝑆 → 𝑦 ⊆ 𝐴 ) |
| 96 |
92 95
|
syl |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ⊆ 𝐴 ) |
| 97 |
96
|
ralrimiva |
⊢ ( 𝑥 ∈ 𝒫 𝑆 → ∀ 𝑦 ∈ 𝑥 𝑦 ⊆ 𝐴 ) |
| 98 |
|
unissb |
⊢ ( ∪ 𝑥 ⊆ 𝐴 ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ⊆ 𝐴 ) |
| 99 |
97 98
|
sylibr |
⊢ ( 𝑥 ∈ 𝒫 𝑆 → ∪ 𝑥 ⊆ 𝐴 ) |
| 100 |
|
vuniex |
⊢ ∪ 𝑥 ∈ V |
| 101 |
100
|
elpw |
⊢ ( ∪ 𝑥 ∈ 𝒫 𝐴 ↔ ∪ 𝑥 ⊆ 𝐴 ) |
| 102 |
99 101
|
sylibr |
⊢ ( 𝑥 ∈ 𝒫 𝑆 → ∪ 𝑥 ∈ 𝒫 𝐴 ) |
| 103 |
102
|
adantr |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑥 ≼ ω ) → ∪ 𝑥 ∈ 𝒫 𝐴 ) |
| 104 |
|
id |
⊢ ( ( 𝑥 ≼ ω ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) → ( 𝑥 ≼ ω ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) ) |
| 105 |
104
|
adantll |
⊢ ( ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑥 ≼ ω ) ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) → ( 𝑥 ≼ ω ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) ) |
| 106 |
|
unictb |
⊢ ( ( 𝑥 ≼ ω ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) → ∪ 𝑥 ≼ ω ) |
| 107 |
|
orc |
⊢ ( ∪ 𝑥 ≼ ω → ( ∪ 𝑥 ≼ ω ∨ ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) |
| 108 |
105 106 107
|
3syl |
⊢ ( ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑥 ≼ ω ) ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) → ( ∪ 𝑥 ≼ ω ∨ ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) |
| 109 |
|
rexnal |
⊢ ( ∃ 𝑦 ∈ 𝑥 ¬ 𝑦 ≼ ω ↔ ¬ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) |
| 110 |
109
|
bicomi |
⊢ ( ¬ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ↔ ∃ 𝑦 ∈ 𝑥 ¬ 𝑦 ≼ ω ) |
| 111 |
110
|
biimpi |
⊢ ( ¬ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω → ∃ 𝑦 ∈ 𝑥 ¬ 𝑦 ≼ ω ) |
| 112 |
111
|
adantl |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ ¬ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) → ∃ 𝑦 ∈ 𝑥 ¬ 𝑦 ≼ ω ) |
| 113 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝒫 𝑆 |
| 114 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω |
| 115 |
114
|
nfn |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω |
| 116 |
113 115
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝒫 𝑆 ∧ ¬ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) |
| 117 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω |
| 118 |
|
elssuni |
⊢ ( 𝑦 ∈ 𝑥 → 𝑦 ⊆ ∪ 𝑥 ) |
| 119 |
118
|
3ad2ant2 |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ≼ ω ) → 𝑦 ⊆ ∪ 𝑥 ) |
| 120 |
119
|
sscond |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ≼ ω ) → ( 𝐴 ∖ ∪ 𝑥 ) ⊆ ( 𝐴 ∖ 𝑦 ) ) |
| 121 |
92
|
3adant3 |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ≼ ω ) → 𝑦 ∈ 𝑆 ) |
| 122 |
|
simp3 |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ≼ ω ) → ¬ 𝑦 ≼ ω ) |
| 123 |
72
|
reqabi |
⊢ ( 𝑦 ∈ 𝑆 ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑦 ≼ ω ∨ ( 𝐴 ∖ 𝑦 ) ≼ ω ) ) ) |
| 124 |
123
|
biimpi |
⊢ ( 𝑦 ∈ 𝑆 → ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑦 ≼ ω ∨ ( 𝐴 ∖ 𝑦 ) ≼ ω ) ) ) |
| 125 |
124
|
simprd |
⊢ ( 𝑦 ∈ 𝑆 → ( 𝑦 ≼ ω ∨ ( 𝐴 ∖ 𝑦 ) ≼ ω ) ) |
| 126 |
125
|
adantr |
⊢ ( ( 𝑦 ∈ 𝑆 ∧ ¬ 𝑦 ≼ ω ) → ( 𝑦 ≼ ω ∨ ( 𝐴 ∖ 𝑦 ) ≼ ω ) ) |
| 127 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝑆 ∧ ¬ 𝑦 ≼ ω ) → ¬ 𝑦 ≼ ω ) |
| 128 |
|
pm2.53 |
⊢ ( ( 𝑦 ≼ ω ∨ ( 𝐴 ∖ 𝑦 ) ≼ ω ) → ( ¬ 𝑦 ≼ ω → ( 𝐴 ∖ 𝑦 ) ≼ ω ) ) |
| 129 |
126 127 128
|
sylc |
⊢ ( ( 𝑦 ∈ 𝑆 ∧ ¬ 𝑦 ≼ ω ) → ( 𝐴 ∖ 𝑦 ) ≼ ω ) |
| 130 |
121 122 129
|
syl2anc |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ≼ ω ) → ( 𝐴 ∖ 𝑦 ) ≼ ω ) |
| 131 |
|
ssct |
⊢ ( ( ( 𝐴 ∖ ∪ 𝑥 ) ⊆ ( 𝐴 ∖ 𝑦 ) ∧ ( 𝐴 ∖ 𝑦 ) ≼ ω ) → ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) |
| 132 |
120 130 131
|
syl2anc |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ≼ ω ) → ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) |
| 133 |
132
|
3exp |
⊢ ( 𝑥 ∈ 𝒫 𝑆 → ( 𝑦 ∈ 𝑥 → ( ¬ 𝑦 ≼ ω → ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) ) |
| 134 |
133
|
adantr |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ ¬ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) → ( 𝑦 ∈ 𝑥 → ( ¬ 𝑦 ≼ ω → ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) ) |
| 135 |
116 117 134
|
rexlimd |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ ¬ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) → ( ∃ 𝑦 ∈ 𝑥 ¬ 𝑦 ≼ ω → ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) |
| 136 |
112 135
|
mpd |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ ¬ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) → ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) |
| 137 |
|
olc |
⊢ ( ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω → ( ∪ 𝑥 ≼ ω ∨ ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) |
| 138 |
136 137
|
syl |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ ¬ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) → ( ∪ 𝑥 ≼ ω ∨ ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) |
| 139 |
138
|
adantlr |
⊢ ( ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑥 ≼ ω ) ∧ ¬ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) → ( ∪ 𝑥 ≼ ω ∨ ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) |
| 140 |
108 139
|
pm2.61dan |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑥 ≼ ω ) → ( ∪ 𝑥 ≼ ω ∨ ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) |
| 141 |
103 140
|
jca |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑥 ≼ ω ) → ( ∪ 𝑥 ∈ 𝒫 𝐴 ∧ ( ∪ 𝑥 ≼ ω ∨ ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) ) |
| 142 |
|
breq1 |
⊢ ( 𝑦 = ∪ 𝑥 → ( 𝑦 ≼ ω ↔ ∪ 𝑥 ≼ ω ) ) |
| 143 |
|
difeq2 |
⊢ ( 𝑦 = ∪ 𝑥 → ( 𝐴 ∖ 𝑦 ) = ( 𝐴 ∖ ∪ 𝑥 ) ) |
| 144 |
143
|
breq1d |
⊢ ( 𝑦 = ∪ 𝑥 → ( ( 𝐴 ∖ 𝑦 ) ≼ ω ↔ ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) |
| 145 |
142 144
|
orbi12d |
⊢ ( 𝑦 = ∪ 𝑥 → ( ( 𝑦 ≼ ω ∨ ( 𝐴 ∖ 𝑦 ) ≼ ω ) ↔ ( ∪ 𝑥 ≼ ω ∨ ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) ) |
| 146 |
145 72
|
elrab2 |
⊢ ( ∪ 𝑥 ∈ 𝑆 ↔ ( ∪ 𝑥 ∈ 𝒫 𝐴 ∧ ( ∪ 𝑥 ≼ ω ∨ ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) ) |
| 147 |
141 146
|
sylibr |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑥 ≼ ω ) → ∪ 𝑥 ∈ 𝑆 ) |
| 148 |
147
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝑆 ∧ 𝑥 ≼ ω ) → ∪ 𝑥 ∈ 𝑆 ) |
| 149 |
6 20 45 88 148
|
issald |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |