Step |
Hyp |
Ref |
Expression |
1 |
|
salexct.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
salexct.b |
⊢ 𝑆 = { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) } |
3 |
1
|
pwexd |
⊢ ( 𝜑 → 𝒫 𝐴 ∈ V ) |
4 |
|
rabexg |
⊢ ( 𝒫 𝐴 ∈ V → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) } ∈ V ) |
5 |
3 4
|
syl |
⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) } ∈ V ) |
6 |
2 5
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
7 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝐴 |
8 |
7
|
a1i |
⊢ ( 𝜑 → ∅ ∈ 𝒫 𝐴 ) |
9 |
|
0fin |
⊢ ∅ ∈ Fin |
10 |
|
fict |
⊢ ( ∅ ∈ Fin → ∅ ≼ ω ) |
11 |
9 10
|
ax-mp |
⊢ ∅ ≼ ω |
12 |
11
|
orci |
⊢ ( ∅ ≼ ω ∨ ( 𝐴 ∖ ∅ ) ≼ ω ) |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( ∅ ≼ ω ∨ ( 𝐴 ∖ ∅ ) ≼ ω ) ) |
14 |
8 13
|
jca |
⊢ ( 𝜑 → ( ∅ ∈ 𝒫 𝐴 ∧ ( ∅ ≼ ω ∨ ( 𝐴 ∖ ∅ ) ≼ ω ) ) ) |
15 |
|
breq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ≼ ω ↔ ∅ ≼ ω ) ) |
16 |
|
difeq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ ∅ ) ) |
17 |
16
|
breq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ↔ ( 𝐴 ∖ ∅ ) ≼ ω ) ) |
18 |
15 17
|
orbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) ↔ ( ∅ ≼ ω ∨ ( 𝐴 ∖ ∅ ) ≼ ω ) ) ) |
19 |
18 2
|
elrab2 |
⊢ ( ∅ ∈ 𝑆 ↔ ( ∅ ∈ 𝒫 𝐴 ∧ ( ∅ ≼ ω ∨ ( 𝐴 ∖ ∅ ) ≼ ω ) ) ) |
20 |
14 19
|
sylibr |
⊢ ( 𝜑 → ∅ ∈ 𝑆 ) |
21 |
|
snidg |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ { 𝑦 } ) |
22 |
|
snelpwi |
⊢ ( 𝑦 ∈ 𝐴 → { 𝑦 } ∈ 𝒫 𝐴 ) |
23 |
|
snfi |
⊢ { 𝑦 } ∈ Fin |
24 |
|
fict |
⊢ ( { 𝑦 } ∈ Fin → { 𝑦 } ≼ ω ) |
25 |
23 24
|
ax-mp |
⊢ { 𝑦 } ≼ ω |
26 |
25
|
orci |
⊢ ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) |
27 |
26
|
a1i |
⊢ ( 𝑦 ∈ 𝐴 → ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) |
28 |
22 27
|
jca |
⊢ ( 𝑦 ∈ 𝐴 → ( { 𝑦 } ∈ 𝒫 𝐴 ∧ ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) ) |
29 |
|
breq1 |
⊢ ( 𝑥 = { 𝑦 } → ( 𝑥 ≼ ω ↔ { 𝑦 } ≼ ω ) ) |
30 |
|
difeq2 |
⊢ ( 𝑥 = { 𝑦 } → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ { 𝑦 } ) ) |
31 |
30
|
breq1d |
⊢ ( 𝑥 = { 𝑦 } → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ↔ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) |
32 |
29 31
|
orbi12d |
⊢ ( 𝑥 = { 𝑦 } → ( ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) ↔ ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) ) |
33 |
32 2
|
elrab2 |
⊢ ( { 𝑦 } ∈ 𝑆 ↔ ( { 𝑦 } ∈ 𝒫 𝐴 ∧ ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) ) |
34 |
28 33
|
sylibr |
⊢ ( 𝑦 ∈ 𝐴 → { 𝑦 } ∈ 𝑆 ) |
35 |
|
elunii |
⊢ ( ( 𝑦 ∈ { 𝑦 } ∧ { 𝑦 } ∈ 𝑆 ) → 𝑦 ∈ ∪ 𝑆 ) |
36 |
21 34 35
|
syl2anc |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ∪ 𝑆 ) |
37 |
36
|
rgen |
⊢ ∀ 𝑦 ∈ 𝐴 𝑦 ∈ ∪ 𝑆 |
38 |
|
dfss3 |
⊢ ( 𝐴 ⊆ ∪ 𝑆 ↔ ∀ 𝑦 ∈ 𝐴 𝑦 ∈ ∪ 𝑆 ) |
39 |
37 38
|
mpbir |
⊢ 𝐴 ⊆ ∪ 𝑆 |
40 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) } ⊆ 𝒫 𝐴 |
41 |
2 40
|
eqsstri |
⊢ 𝑆 ⊆ 𝒫 𝐴 |
42 |
41
|
unissi |
⊢ ∪ 𝑆 ⊆ ∪ 𝒫 𝐴 |
43 |
|
unipw |
⊢ ∪ 𝒫 𝐴 = 𝐴 |
44 |
42 43
|
sseqtri |
⊢ ∪ 𝑆 ⊆ 𝐴 |
45 |
39 44
|
eqssi |
⊢ 𝐴 = ∪ 𝑆 |
46 |
|
difssd |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝑥 ) ⊆ 𝐴 ) |
47 |
1 46
|
ssexd |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝑥 ) ∈ V ) |
48 |
|
elpwg |
⊢ ( ( 𝐴 ∖ 𝑥 ) ∈ V → ( ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ 𝑥 ) ⊆ 𝐴 ) ) |
49 |
47 48
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ 𝑥 ) ⊆ 𝐴 ) ) |
50 |
46 49
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ) |
51 |
50
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑥 ≼ ω ) → ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ) |
52 |
41
|
sseli |
⊢ ( 𝑥 ∈ 𝑆 → 𝑥 ∈ 𝒫 𝐴 ) |
53 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴 ) |
54 |
52 53
|
syl |
⊢ ( 𝑥 ∈ 𝑆 → 𝑥 ⊆ 𝐴 ) |
55 |
|
dfss4 |
⊢ ( 𝑥 ⊆ 𝐴 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) = 𝑥 ) |
56 |
54 55
|
sylib |
⊢ ( 𝑥 ∈ 𝑆 → ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) = 𝑥 ) |
57 |
56
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑥 ≼ ω ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) = 𝑥 ) |
58 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑥 ≼ ω ) → 𝑥 ≼ ω ) |
59 |
57 58
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑥 ≼ ω ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ≼ ω ) |
60 |
|
olc |
⊢ ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ≼ ω → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ≼ ω ) ) |
61 |
59 60
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑥 ≼ ω ) → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ≼ ω ) ) |
62 |
51 61
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑥 ≼ ω ) → ( ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ≼ ω ) ) ) |
63 |
|
breq1 |
⊢ ( 𝑦 = ( 𝐴 ∖ 𝑥 ) → ( 𝑦 ≼ ω ↔ ( 𝐴 ∖ 𝑥 ) ≼ ω ) ) |
64 |
|
difeq2 |
⊢ ( 𝑦 = ( 𝐴 ∖ 𝑥 ) → ( 𝐴 ∖ 𝑦 ) = ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ) |
65 |
64
|
breq1d |
⊢ ( 𝑦 = ( 𝐴 ∖ 𝑥 ) → ( ( 𝐴 ∖ 𝑦 ) ≼ ω ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ≼ ω ) ) |
66 |
63 65
|
orbi12d |
⊢ ( 𝑦 = ( 𝐴 ∖ 𝑥 ) → ( ( 𝑦 ≼ ω ∨ ( 𝐴 ∖ 𝑦 ) ≼ ω ) ↔ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ≼ ω ) ) ) |
67 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≼ ω ↔ 𝑦 ≼ ω ) ) |
68 |
|
difeq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑦 ) ) |
69 |
68
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ↔ ( 𝐴 ∖ 𝑦 ) ≼ ω ) ) |
70 |
67 69
|
orbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) ↔ ( 𝑦 ≼ ω ∨ ( 𝐴 ∖ 𝑦 ) ≼ ω ) ) ) |
71 |
70
|
cbvrabv |
⊢ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) } = { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑦 ≼ ω ∨ ( 𝐴 ∖ 𝑦 ) ≼ ω ) } |
72 |
2 71
|
eqtri |
⊢ 𝑆 = { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑦 ≼ ω ∨ ( 𝐴 ∖ 𝑦 ) ≼ ω ) } |
73 |
66 72
|
elrab2 |
⊢ ( ( 𝐴 ∖ 𝑥 ) ∈ 𝑆 ↔ ( ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ≼ ω ) ) ) |
74 |
62 73
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑥 ≼ ω ) → ( 𝐴 ∖ 𝑥 ) ∈ 𝑆 ) |
75 |
50
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ ¬ 𝑥 ≼ ω ) → ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ) |
76 |
2
|
rabeq2i |
⊢ ( 𝑥 ∈ 𝑆 ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) ) ) |
77 |
76
|
biimpi |
⊢ ( 𝑥 ∈ 𝑆 → ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) ) ) |
78 |
77
|
simprd |
⊢ ( 𝑥 ∈ 𝑆 → ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) ) |
79 |
78
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) ) |
80 |
79
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ ¬ 𝑥 ≼ ω ) → ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) ) |
81 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ ¬ 𝑥 ≼ ω ) → ¬ 𝑥 ≼ ω ) |
82 |
|
pm2.53 |
⊢ ( ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) → ( ¬ 𝑥 ≼ ω → ( 𝐴 ∖ 𝑥 ) ≼ ω ) ) |
83 |
80 81 82
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ ¬ 𝑥 ≼ ω ) → ( 𝐴 ∖ 𝑥 ) ≼ ω ) |
84 |
|
orc |
⊢ ( ( 𝐴 ∖ 𝑥 ) ≼ ω → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ≼ ω ) ) |
85 |
83 84
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ ¬ 𝑥 ≼ ω ) → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ≼ ω ) ) |
86 |
75 85
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ ¬ 𝑥 ≼ ω ) → ( ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ≼ ω ) ) ) |
87 |
86 73
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ ¬ 𝑥 ≼ ω ) → ( 𝐴 ∖ 𝑥 ) ∈ 𝑆 ) |
88 |
74 87
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝐴 ∖ 𝑥 ) ∈ 𝑆 ) |
89 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝑆 → 𝑥 ⊆ 𝑆 ) |
90 |
89
|
adantr |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ⊆ 𝑆 ) |
91 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) |
92 |
90 91
|
sseldd |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑆 ) |
93 |
41
|
sseli |
⊢ ( 𝑦 ∈ 𝑆 → 𝑦 ∈ 𝒫 𝐴 ) |
94 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝐴 → 𝑦 ⊆ 𝐴 ) |
95 |
93 94
|
syl |
⊢ ( 𝑦 ∈ 𝑆 → 𝑦 ⊆ 𝐴 ) |
96 |
92 95
|
syl |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ⊆ 𝐴 ) |
97 |
96
|
ralrimiva |
⊢ ( 𝑥 ∈ 𝒫 𝑆 → ∀ 𝑦 ∈ 𝑥 𝑦 ⊆ 𝐴 ) |
98 |
|
unissb |
⊢ ( ∪ 𝑥 ⊆ 𝐴 ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ⊆ 𝐴 ) |
99 |
97 98
|
sylibr |
⊢ ( 𝑥 ∈ 𝒫 𝑆 → ∪ 𝑥 ⊆ 𝐴 ) |
100 |
|
vuniex |
⊢ ∪ 𝑥 ∈ V |
101 |
100
|
elpw |
⊢ ( ∪ 𝑥 ∈ 𝒫 𝐴 ↔ ∪ 𝑥 ⊆ 𝐴 ) |
102 |
99 101
|
sylibr |
⊢ ( 𝑥 ∈ 𝒫 𝑆 → ∪ 𝑥 ∈ 𝒫 𝐴 ) |
103 |
102
|
adantr |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑥 ≼ ω ) → ∪ 𝑥 ∈ 𝒫 𝐴 ) |
104 |
|
id |
⊢ ( ( 𝑥 ≼ ω ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) → ( 𝑥 ≼ ω ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) ) |
105 |
104
|
adantll |
⊢ ( ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑥 ≼ ω ) ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) → ( 𝑥 ≼ ω ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) ) |
106 |
|
unictb |
⊢ ( ( 𝑥 ≼ ω ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) → ∪ 𝑥 ≼ ω ) |
107 |
|
orc |
⊢ ( ∪ 𝑥 ≼ ω → ( ∪ 𝑥 ≼ ω ∨ ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) |
108 |
105 106 107
|
3syl |
⊢ ( ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑥 ≼ ω ) ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) → ( ∪ 𝑥 ≼ ω ∨ ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) |
109 |
|
rexnal |
⊢ ( ∃ 𝑦 ∈ 𝑥 ¬ 𝑦 ≼ ω ↔ ¬ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) |
110 |
109
|
bicomi |
⊢ ( ¬ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ↔ ∃ 𝑦 ∈ 𝑥 ¬ 𝑦 ≼ ω ) |
111 |
110
|
biimpi |
⊢ ( ¬ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω → ∃ 𝑦 ∈ 𝑥 ¬ 𝑦 ≼ ω ) |
112 |
111
|
adantl |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ ¬ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) → ∃ 𝑦 ∈ 𝑥 ¬ 𝑦 ≼ ω ) |
113 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝒫 𝑆 |
114 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω |
115 |
114
|
nfn |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω |
116 |
113 115
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝒫 𝑆 ∧ ¬ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) |
117 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω |
118 |
|
elssuni |
⊢ ( 𝑦 ∈ 𝑥 → 𝑦 ⊆ ∪ 𝑥 ) |
119 |
118
|
3ad2ant2 |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ≼ ω ) → 𝑦 ⊆ ∪ 𝑥 ) |
120 |
119
|
sscond |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ≼ ω ) → ( 𝐴 ∖ ∪ 𝑥 ) ⊆ ( 𝐴 ∖ 𝑦 ) ) |
121 |
92
|
3adant3 |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ≼ ω ) → 𝑦 ∈ 𝑆 ) |
122 |
|
simp3 |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ≼ ω ) → ¬ 𝑦 ≼ ω ) |
123 |
72
|
rabeq2i |
⊢ ( 𝑦 ∈ 𝑆 ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑦 ≼ ω ∨ ( 𝐴 ∖ 𝑦 ) ≼ ω ) ) ) |
124 |
123
|
biimpi |
⊢ ( 𝑦 ∈ 𝑆 → ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑦 ≼ ω ∨ ( 𝐴 ∖ 𝑦 ) ≼ ω ) ) ) |
125 |
124
|
simprd |
⊢ ( 𝑦 ∈ 𝑆 → ( 𝑦 ≼ ω ∨ ( 𝐴 ∖ 𝑦 ) ≼ ω ) ) |
126 |
125
|
adantr |
⊢ ( ( 𝑦 ∈ 𝑆 ∧ ¬ 𝑦 ≼ ω ) → ( 𝑦 ≼ ω ∨ ( 𝐴 ∖ 𝑦 ) ≼ ω ) ) |
127 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝑆 ∧ ¬ 𝑦 ≼ ω ) → ¬ 𝑦 ≼ ω ) |
128 |
|
pm2.53 |
⊢ ( ( 𝑦 ≼ ω ∨ ( 𝐴 ∖ 𝑦 ) ≼ ω ) → ( ¬ 𝑦 ≼ ω → ( 𝐴 ∖ 𝑦 ) ≼ ω ) ) |
129 |
126 127 128
|
sylc |
⊢ ( ( 𝑦 ∈ 𝑆 ∧ ¬ 𝑦 ≼ ω ) → ( 𝐴 ∖ 𝑦 ) ≼ ω ) |
130 |
121 122 129
|
syl2anc |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ≼ ω ) → ( 𝐴 ∖ 𝑦 ) ≼ ω ) |
131 |
|
ssct |
⊢ ( ( ( 𝐴 ∖ ∪ 𝑥 ) ⊆ ( 𝐴 ∖ 𝑦 ) ∧ ( 𝐴 ∖ 𝑦 ) ≼ ω ) → ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) |
132 |
120 130 131
|
syl2anc |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ≼ ω ) → ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) |
133 |
132
|
3exp |
⊢ ( 𝑥 ∈ 𝒫 𝑆 → ( 𝑦 ∈ 𝑥 → ( ¬ 𝑦 ≼ ω → ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) ) |
134 |
133
|
adantr |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ ¬ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) → ( 𝑦 ∈ 𝑥 → ( ¬ 𝑦 ≼ ω → ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) ) |
135 |
116 117 134
|
rexlimd |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ ¬ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) → ( ∃ 𝑦 ∈ 𝑥 ¬ 𝑦 ≼ ω → ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) |
136 |
112 135
|
mpd |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ ¬ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) → ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) |
137 |
|
olc |
⊢ ( ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω → ( ∪ 𝑥 ≼ ω ∨ ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) |
138 |
136 137
|
syl |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ ¬ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) → ( ∪ 𝑥 ≼ ω ∨ ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) |
139 |
138
|
adantlr |
⊢ ( ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑥 ≼ ω ) ∧ ¬ ∀ 𝑦 ∈ 𝑥 𝑦 ≼ ω ) → ( ∪ 𝑥 ≼ ω ∨ ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) |
140 |
108 139
|
pm2.61dan |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑥 ≼ ω ) → ( ∪ 𝑥 ≼ ω ∨ ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) |
141 |
103 140
|
jca |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑥 ≼ ω ) → ( ∪ 𝑥 ∈ 𝒫 𝐴 ∧ ( ∪ 𝑥 ≼ ω ∨ ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) ) |
142 |
|
breq1 |
⊢ ( 𝑦 = ∪ 𝑥 → ( 𝑦 ≼ ω ↔ ∪ 𝑥 ≼ ω ) ) |
143 |
|
difeq2 |
⊢ ( 𝑦 = ∪ 𝑥 → ( 𝐴 ∖ 𝑦 ) = ( 𝐴 ∖ ∪ 𝑥 ) ) |
144 |
143
|
breq1d |
⊢ ( 𝑦 = ∪ 𝑥 → ( ( 𝐴 ∖ 𝑦 ) ≼ ω ↔ ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) |
145 |
142 144
|
orbi12d |
⊢ ( 𝑦 = ∪ 𝑥 → ( ( 𝑦 ≼ ω ∨ ( 𝐴 ∖ 𝑦 ) ≼ ω ) ↔ ( ∪ 𝑥 ≼ ω ∨ ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) ) |
146 |
145 72
|
elrab2 |
⊢ ( ∪ 𝑥 ∈ 𝑆 ↔ ( ∪ 𝑥 ∈ 𝒫 𝐴 ∧ ( ∪ 𝑥 ≼ ω ∨ ( 𝐴 ∖ ∪ 𝑥 ) ≼ ω ) ) ) |
147 |
141 146
|
sylibr |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑥 ≼ ω ) → ∪ 𝑥 ∈ 𝑆 ) |
148 |
147
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝑆 ∧ 𝑥 ≼ ω ) → ∪ 𝑥 ∈ 𝑆 ) |
149 |
6 20 45 88 148
|
issald |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |