| Step | Hyp | Ref | Expression | 
						
							| 1 |  | salexct.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | salexct.b | ⊢ 𝑆  =  { 𝑥  ∈  𝒫  𝐴  ∣  ( 𝑥  ≼  ω  ∨  ( 𝐴  ∖  𝑥 )  ≼  ω ) } | 
						
							| 3 | 1 | pwexd | ⊢ ( 𝜑  →  𝒫  𝐴  ∈  V ) | 
						
							| 4 |  | rabexg | ⊢ ( 𝒫  𝐴  ∈  V  →  { 𝑥  ∈  𝒫  𝐴  ∣  ( 𝑥  ≼  ω  ∨  ( 𝐴  ∖  𝑥 )  ≼  ω ) }  ∈  V ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝜑  →  { 𝑥  ∈  𝒫  𝐴  ∣  ( 𝑥  ≼  ω  ∨  ( 𝐴  ∖  𝑥 )  ≼  ω ) }  ∈  V ) | 
						
							| 6 | 2 5 | eqeltrid | ⊢ ( 𝜑  →  𝑆  ∈  V ) | 
						
							| 7 |  | 0elpw | ⊢ ∅  ∈  𝒫  𝐴 | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  ∅  ∈  𝒫  𝐴 ) | 
						
							| 9 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 10 |  | fict | ⊢ ( ∅  ∈  Fin  →  ∅  ≼  ω ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ ∅  ≼  ω | 
						
							| 12 | 11 | orci | ⊢ ( ∅  ≼  ω  ∨  ( 𝐴  ∖  ∅ )  ≼  ω ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ( ∅  ≼  ω  ∨  ( 𝐴  ∖  ∅ )  ≼  ω ) ) | 
						
							| 14 | 8 13 | jca | ⊢ ( 𝜑  →  ( ∅  ∈  𝒫  𝐴  ∧  ( ∅  ≼  ω  ∨  ( 𝐴  ∖  ∅ )  ≼  ω ) ) ) | 
						
							| 15 |  | breq1 | ⊢ ( 𝑥  =  ∅  →  ( 𝑥  ≼  ω  ↔  ∅  ≼  ω ) ) | 
						
							| 16 |  | difeq2 | ⊢ ( 𝑥  =  ∅  →  ( 𝐴  ∖  𝑥 )  =  ( 𝐴  ∖  ∅ ) ) | 
						
							| 17 | 16 | breq1d | ⊢ ( 𝑥  =  ∅  →  ( ( 𝐴  ∖  𝑥 )  ≼  ω  ↔  ( 𝐴  ∖  ∅ )  ≼  ω ) ) | 
						
							| 18 | 15 17 | orbi12d | ⊢ ( 𝑥  =  ∅  →  ( ( 𝑥  ≼  ω  ∨  ( 𝐴  ∖  𝑥 )  ≼  ω )  ↔  ( ∅  ≼  ω  ∨  ( 𝐴  ∖  ∅ )  ≼  ω ) ) ) | 
						
							| 19 | 18 2 | elrab2 | ⊢ ( ∅  ∈  𝑆  ↔  ( ∅  ∈  𝒫  𝐴  ∧  ( ∅  ≼  ω  ∨  ( 𝐴  ∖  ∅ )  ≼  ω ) ) ) | 
						
							| 20 | 14 19 | sylibr | ⊢ ( 𝜑  →  ∅  ∈  𝑆 ) | 
						
							| 21 |  | snidg | ⊢ ( 𝑦  ∈  𝐴  →  𝑦  ∈  { 𝑦 } ) | 
						
							| 22 |  | snelpwi | ⊢ ( 𝑦  ∈  𝐴  →  { 𝑦 }  ∈  𝒫  𝐴 ) | 
						
							| 23 |  | snfi | ⊢ { 𝑦 }  ∈  Fin | 
						
							| 24 |  | fict | ⊢ ( { 𝑦 }  ∈  Fin  →  { 𝑦 }  ≼  ω ) | 
						
							| 25 | 23 24 | ax-mp | ⊢ { 𝑦 }  ≼  ω | 
						
							| 26 | 25 | orci | ⊢ ( { 𝑦 }  ≼  ω  ∨  ( 𝐴  ∖  { 𝑦 } )  ≼  ω ) | 
						
							| 27 | 26 | a1i | ⊢ ( 𝑦  ∈  𝐴  →  ( { 𝑦 }  ≼  ω  ∨  ( 𝐴  ∖  { 𝑦 } )  ≼  ω ) ) | 
						
							| 28 | 22 27 | jca | ⊢ ( 𝑦  ∈  𝐴  →  ( { 𝑦 }  ∈  𝒫  𝐴  ∧  ( { 𝑦 }  ≼  ω  ∨  ( 𝐴  ∖  { 𝑦 } )  ≼  ω ) ) ) | 
						
							| 29 |  | breq1 | ⊢ ( 𝑥  =  { 𝑦 }  →  ( 𝑥  ≼  ω  ↔  { 𝑦 }  ≼  ω ) ) | 
						
							| 30 |  | difeq2 | ⊢ ( 𝑥  =  { 𝑦 }  →  ( 𝐴  ∖  𝑥 )  =  ( 𝐴  ∖  { 𝑦 } ) ) | 
						
							| 31 | 30 | breq1d | ⊢ ( 𝑥  =  { 𝑦 }  →  ( ( 𝐴  ∖  𝑥 )  ≼  ω  ↔  ( 𝐴  ∖  { 𝑦 } )  ≼  ω ) ) | 
						
							| 32 | 29 31 | orbi12d | ⊢ ( 𝑥  =  { 𝑦 }  →  ( ( 𝑥  ≼  ω  ∨  ( 𝐴  ∖  𝑥 )  ≼  ω )  ↔  ( { 𝑦 }  ≼  ω  ∨  ( 𝐴  ∖  { 𝑦 } )  ≼  ω ) ) ) | 
						
							| 33 | 32 2 | elrab2 | ⊢ ( { 𝑦 }  ∈  𝑆  ↔  ( { 𝑦 }  ∈  𝒫  𝐴  ∧  ( { 𝑦 }  ≼  ω  ∨  ( 𝐴  ∖  { 𝑦 } )  ≼  ω ) ) ) | 
						
							| 34 | 28 33 | sylibr | ⊢ ( 𝑦  ∈  𝐴  →  { 𝑦 }  ∈  𝑆 ) | 
						
							| 35 |  | elunii | ⊢ ( ( 𝑦  ∈  { 𝑦 }  ∧  { 𝑦 }  ∈  𝑆 )  →  𝑦  ∈  ∪  𝑆 ) | 
						
							| 36 | 21 34 35 | syl2anc | ⊢ ( 𝑦  ∈  𝐴  →  𝑦  ∈  ∪  𝑆 ) | 
						
							| 37 | 36 | rgen | ⊢ ∀ 𝑦  ∈  𝐴 𝑦  ∈  ∪  𝑆 | 
						
							| 38 |  | dfss3 | ⊢ ( 𝐴  ⊆  ∪  𝑆  ↔  ∀ 𝑦  ∈  𝐴 𝑦  ∈  ∪  𝑆 ) | 
						
							| 39 | 37 38 | mpbir | ⊢ 𝐴  ⊆  ∪  𝑆 | 
						
							| 40 |  | ssrab2 | ⊢ { 𝑥  ∈  𝒫  𝐴  ∣  ( 𝑥  ≼  ω  ∨  ( 𝐴  ∖  𝑥 )  ≼  ω ) }  ⊆  𝒫  𝐴 | 
						
							| 41 | 2 40 | eqsstri | ⊢ 𝑆  ⊆  𝒫  𝐴 | 
						
							| 42 | 41 | unissi | ⊢ ∪  𝑆  ⊆  ∪  𝒫  𝐴 | 
						
							| 43 |  | unipw | ⊢ ∪  𝒫  𝐴  =  𝐴 | 
						
							| 44 | 42 43 | sseqtri | ⊢ ∪  𝑆  ⊆  𝐴 | 
						
							| 45 | 39 44 | eqssi | ⊢ 𝐴  =  ∪  𝑆 | 
						
							| 46 |  | difssd | ⊢ ( 𝜑  →  ( 𝐴  ∖  𝑥 )  ⊆  𝐴 ) | 
						
							| 47 | 1 46 | ssexd | ⊢ ( 𝜑  →  ( 𝐴  ∖  𝑥 )  ∈  V ) | 
						
							| 48 |  | elpwg | ⊢ ( ( 𝐴  ∖  𝑥 )  ∈  V  →  ( ( 𝐴  ∖  𝑥 )  ∈  𝒫  𝐴  ↔  ( 𝐴  ∖  𝑥 )  ⊆  𝐴 ) ) | 
						
							| 49 | 47 48 | syl | ⊢ ( 𝜑  →  ( ( 𝐴  ∖  𝑥 )  ∈  𝒫  𝐴  ↔  ( 𝐴  ∖  𝑥 )  ⊆  𝐴 ) ) | 
						
							| 50 | 46 49 | mpbird | ⊢ ( 𝜑  →  ( 𝐴  ∖  𝑥 )  ∈  𝒫  𝐴 ) | 
						
							| 51 | 50 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  ∧  𝑥  ≼  ω )  →  ( 𝐴  ∖  𝑥 )  ∈  𝒫  𝐴 ) | 
						
							| 52 | 41 | sseli | ⊢ ( 𝑥  ∈  𝑆  →  𝑥  ∈  𝒫  𝐴 ) | 
						
							| 53 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  𝐴  →  𝑥  ⊆  𝐴 ) | 
						
							| 54 | 52 53 | syl | ⊢ ( 𝑥  ∈  𝑆  →  𝑥  ⊆  𝐴 ) | 
						
							| 55 |  | dfss4 | ⊢ ( 𝑥  ⊆  𝐴  ↔  ( 𝐴  ∖  ( 𝐴  ∖  𝑥 ) )  =  𝑥 ) | 
						
							| 56 | 54 55 | sylib | ⊢ ( 𝑥  ∈  𝑆  →  ( 𝐴  ∖  ( 𝐴  ∖  𝑥 ) )  =  𝑥 ) | 
						
							| 57 | 56 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  ∧  𝑥  ≼  ω )  →  ( 𝐴  ∖  ( 𝐴  ∖  𝑥 ) )  =  𝑥 ) | 
						
							| 58 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  ∧  𝑥  ≼  ω )  →  𝑥  ≼  ω ) | 
						
							| 59 | 57 58 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  ∧  𝑥  ≼  ω )  →  ( 𝐴  ∖  ( 𝐴  ∖  𝑥 ) )  ≼  ω ) | 
						
							| 60 |  | olc | ⊢ ( ( 𝐴  ∖  ( 𝐴  ∖  𝑥 ) )  ≼  ω  →  ( ( 𝐴  ∖  𝑥 )  ≼  ω  ∨  ( 𝐴  ∖  ( 𝐴  ∖  𝑥 ) )  ≼  ω ) ) | 
						
							| 61 | 59 60 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  ∧  𝑥  ≼  ω )  →  ( ( 𝐴  ∖  𝑥 )  ≼  ω  ∨  ( 𝐴  ∖  ( 𝐴  ∖  𝑥 ) )  ≼  ω ) ) | 
						
							| 62 | 51 61 | jca | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  ∧  𝑥  ≼  ω )  →  ( ( 𝐴  ∖  𝑥 )  ∈  𝒫  𝐴  ∧  ( ( 𝐴  ∖  𝑥 )  ≼  ω  ∨  ( 𝐴  ∖  ( 𝐴  ∖  𝑥 ) )  ≼  ω ) ) ) | 
						
							| 63 |  | breq1 | ⊢ ( 𝑦  =  ( 𝐴  ∖  𝑥 )  →  ( 𝑦  ≼  ω  ↔  ( 𝐴  ∖  𝑥 )  ≼  ω ) ) | 
						
							| 64 |  | difeq2 | ⊢ ( 𝑦  =  ( 𝐴  ∖  𝑥 )  →  ( 𝐴  ∖  𝑦 )  =  ( 𝐴  ∖  ( 𝐴  ∖  𝑥 ) ) ) | 
						
							| 65 | 64 | breq1d | ⊢ ( 𝑦  =  ( 𝐴  ∖  𝑥 )  →  ( ( 𝐴  ∖  𝑦 )  ≼  ω  ↔  ( 𝐴  ∖  ( 𝐴  ∖  𝑥 ) )  ≼  ω ) ) | 
						
							| 66 | 63 65 | orbi12d | ⊢ ( 𝑦  =  ( 𝐴  ∖  𝑥 )  →  ( ( 𝑦  ≼  ω  ∨  ( 𝐴  ∖  𝑦 )  ≼  ω )  ↔  ( ( 𝐴  ∖  𝑥 )  ≼  ω  ∨  ( 𝐴  ∖  ( 𝐴  ∖  𝑥 ) )  ≼  ω ) ) ) | 
						
							| 67 |  | breq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ≼  ω  ↔  𝑦  ≼  ω ) ) | 
						
							| 68 |  | difeq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ∖  𝑥 )  =  ( 𝐴  ∖  𝑦 ) ) | 
						
							| 69 | 68 | breq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐴  ∖  𝑥 )  ≼  ω  ↔  ( 𝐴  ∖  𝑦 )  ≼  ω ) ) | 
						
							| 70 | 67 69 | orbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ≼  ω  ∨  ( 𝐴  ∖  𝑥 )  ≼  ω )  ↔  ( 𝑦  ≼  ω  ∨  ( 𝐴  ∖  𝑦 )  ≼  ω ) ) ) | 
						
							| 71 | 70 | cbvrabv | ⊢ { 𝑥  ∈  𝒫  𝐴  ∣  ( 𝑥  ≼  ω  ∨  ( 𝐴  ∖  𝑥 )  ≼  ω ) }  =  { 𝑦  ∈  𝒫  𝐴  ∣  ( 𝑦  ≼  ω  ∨  ( 𝐴  ∖  𝑦 )  ≼  ω ) } | 
						
							| 72 | 2 71 | eqtri | ⊢ 𝑆  =  { 𝑦  ∈  𝒫  𝐴  ∣  ( 𝑦  ≼  ω  ∨  ( 𝐴  ∖  𝑦 )  ≼  ω ) } | 
						
							| 73 | 66 72 | elrab2 | ⊢ ( ( 𝐴  ∖  𝑥 )  ∈  𝑆  ↔  ( ( 𝐴  ∖  𝑥 )  ∈  𝒫  𝐴  ∧  ( ( 𝐴  ∖  𝑥 )  ≼  ω  ∨  ( 𝐴  ∖  ( 𝐴  ∖  𝑥 ) )  ≼  ω ) ) ) | 
						
							| 74 | 62 73 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  ∧  𝑥  ≼  ω )  →  ( 𝐴  ∖  𝑥 )  ∈  𝑆 ) | 
						
							| 75 | 50 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  ∧  ¬  𝑥  ≼  ω )  →  ( 𝐴  ∖  𝑥 )  ∈  𝒫  𝐴 ) | 
						
							| 76 | 2 | reqabi | ⊢ ( 𝑥  ∈  𝑆  ↔  ( 𝑥  ∈  𝒫  𝐴  ∧  ( 𝑥  ≼  ω  ∨  ( 𝐴  ∖  𝑥 )  ≼  ω ) ) ) | 
						
							| 77 | 76 | biimpi | ⊢ ( 𝑥  ∈  𝑆  →  ( 𝑥  ∈  𝒫  𝐴  ∧  ( 𝑥  ≼  ω  ∨  ( 𝐴  ∖  𝑥 )  ≼  ω ) ) ) | 
						
							| 78 | 77 | simprd | ⊢ ( 𝑥  ∈  𝑆  →  ( 𝑥  ≼  ω  ∨  ( 𝐴  ∖  𝑥 )  ≼  ω ) ) | 
						
							| 79 | 78 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  ( 𝑥  ≼  ω  ∨  ( 𝐴  ∖  𝑥 )  ≼  ω ) ) | 
						
							| 80 | 79 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  ∧  ¬  𝑥  ≼  ω )  →  ( 𝑥  ≼  ω  ∨  ( 𝐴  ∖  𝑥 )  ≼  ω ) ) | 
						
							| 81 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  ∧  ¬  𝑥  ≼  ω )  →  ¬  𝑥  ≼  ω ) | 
						
							| 82 |  | pm2.53 | ⊢ ( ( 𝑥  ≼  ω  ∨  ( 𝐴  ∖  𝑥 )  ≼  ω )  →  ( ¬  𝑥  ≼  ω  →  ( 𝐴  ∖  𝑥 )  ≼  ω ) ) | 
						
							| 83 | 80 81 82 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  ∧  ¬  𝑥  ≼  ω )  →  ( 𝐴  ∖  𝑥 )  ≼  ω ) | 
						
							| 84 |  | orc | ⊢ ( ( 𝐴  ∖  𝑥 )  ≼  ω  →  ( ( 𝐴  ∖  𝑥 )  ≼  ω  ∨  ( 𝐴  ∖  ( 𝐴  ∖  𝑥 ) )  ≼  ω ) ) | 
						
							| 85 | 83 84 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  ∧  ¬  𝑥  ≼  ω )  →  ( ( 𝐴  ∖  𝑥 )  ≼  ω  ∨  ( 𝐴  ∖  ( 𝐴  ∖  𝑥 ) )  ≼  ω ) ) | 
						
							| 86 | 75 85 | jca | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  ∧  ¬  𝑥  ≼  ω )  →  ( ( 𝐴  ∖  𝑥 )  ∈  𝒫  𝐴  ∧  ( ( 𝐴  ∖  𝑥 )  ≼  ω  ∨  ( 𝐴  ∖  ( 𝐴  ∖  𝑥 ) )  ≼  ω ) ) ) | 
						
							| 87 | 86 73 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  ∧  ¬  𝑥  ≼  ω )  →  ( 𝐴  ∖  𝑥 )  ∈  𝑆 ) | 
						
							| 88 | 74 87 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  ( 𝐴  ∖  𝑥 )  ∈  𝑆 ) | 
						
							| 89 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  𝑆  →  𝑥  ⊆  𝑆 ) | 
						
							| 90 | 89 | adantr | ⊢ ( ( 𝑥  ∈  𝒫  𝑆  ∧  𝑦  ∈  𝑥 )  →  𝑥  ⊆  𝑆 ) | 
						
							| 91 |  | simpr | ⊢ ( ( 𝑥  ∈  𝒫  𝑆  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  𝑥 ) | 
						
							| 92 | 90 91 | sseldd | ⊢ ( ( 𝑥  ∈  𝒫  𝑆  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  𝑆 ) | 
						
							| 93 | 41 | sseli | ⊢ ( 𝑦  ∈  𝑆  →  𝑦  ∈  𝒫  𝐴 ) | 
						
							| 94 |  | elpwi | ⊢ ( 𝑦  ∈  𝒫  𝐴  →  𝑦  ⊆  𝐴 ) | 
						
							| 95 | 93 94 | syl | ⊢ ( 𝑦  ∈  𝑆  →  𝑦  ⊆  𝐴 ) | 
						
							| 96 | 92 95 | syl | ⊢ ( ( 𝑥  ∈  𝒫  𝑆  ∧  𝑦  ∈  𝑥 )  →  𝑦  ⊆  𝐴 ) | 
						
							| 97 | 96 | ralrimiva | ⊢ ( 𝑥  ∈  𝒫  𝑆  →  ∀ 𝑦  ∈  𝑥 𝑦  ⊆  𝐴 ) | 
						
							| 98 |  | unissb | ⊢ ( ∪  𝑥  ⊆  𝐴  ↔  ∀ 𝑦  ∈  𝑥 𝑦  ⊆  𝐴 ) | 
						
							| 99 | 97 98 | sylibr | ⊢ ( 𝑥  ∈  𝒫  𝑆  →  ∪  𝑥  ⊆  𝐴 ) | 
						
							| 100 |  | vuniex | ⊢ ∪  𝑥  ∈  V | 
						
							| 101 | 100 | elpw | ⊢ ( ∪  𝑥  ∈  𝒫  𝐴  ↔  ∪  𝑥  ⊆  𝐴 ) | 
						
							| 102 | 99 101 | sylibr | ⊢ ( 𝑥  ∈  𝒫  𝑆  →  ∪  𝑥  ∈  𝒫  𝐴 ) | 
						
							| 103 | 102 | adantr | ⊢ ( ( 𝑥  ∈  𝒫  𝑆  ∧  𝑥  ≼  ω )  →  ∪  𝑥  ∈  𝒫  𝐴 ) | 
						
							| 104 |  | id | ⊢ ( ( 𝑥  ≼  ω  ∧  ∀ 𝑦  ∈  𝑥 𝑦  ≼  ω )  →  ( 𝑥  ≼  ω  ∧  ∀ 𝑦  ∈  𝑥 𝑦  ≼  ω ) ) | 
						
							| 105 | 104 | adantll | ⊢ ( ( ( 𝑥  ∈  𝒫  𝑆  ∧  𝑥  ≼  ω )  ∧  ∀ 𝑦  ∈  𝑥 𝑦  ≼  ω )  →  ( 𝑥  ≼  ω  ∧  ∀ 𝑦  ∈  𝑥 𝑦  ≼  ω ) ) | 
						
							| 106 |  | unictb | ⊢ ( ( 𝑥  ≼  ω  ∧  ∀ 𝑦  ∈  𝑥 𝑦  ≼  ω )  →  ∪  𝑥  ≼  ω ) | 
						
							| 107 |  | orc | ⊢ ( ∪  𝑥  ≼  ω  →  ( ∪  𝑥  ≼  ω  ∨  ( 𝐴  ∖  ∪  𝑥 )  ≼  ω ) ) | 
						
							| 108 | 105 106 107 | 3syl | ⊢ ( ( ( 𝑥  ∈  𝒫  𝑆  ∧  𝑥  ≼  ω )  ∧  ∀ 𝑦  ∈  𝑥 𝑦  ≼  ω )  →  ( ∪  𝑥  ≼  ω  ∨  ( 𝐴  ∖  ∪  𝑥 )  ≼  ω ) ) | 
						
							| 109 |  | rexnal | ⊢ ( ∃ 𝑦  ∈  𝑥 ¬  𝑦  ≼  ω  ↔  ¬  ∀ 𝑦  ∈  𝑥 𝑦  ≼  ω ) | 
						
							| 110 | 109 | bicomi | ⊢ ( ¬  ∀ 𝑦  ∈  𝑥 𝑦  ≼  ω  ↔  ∃ 𝑦  ∈  𝑥 ¬  𝑦  ≼  ω ) | 
						
							| 111 | 110 | biimpi | ⊢ ( ¬  ∀ 𝑦  ∈  𝑥 𝑦  ≼  ω  →  ∃ 𝑦  ∈  𝑥 ¬  𝑦  ≼  ω ) | 
						
							| 112 | 111 | adantl | ⊢ ( ( 𝑥  ∈  𝒫  𝑆  ∧  ¬  ∀ 𝑦  ∈  𝑥 𝑦  ≼  ω )  →  ∃ 𝑦  ∈  𝑥 ¬  𝑦  ≼  ω ) | 
						
							| 113 |  | nfv | ⊢ Ⅎ 𝑦 𝑥  ∈  𝒫  𝑆 | 
						
							| 114 |  | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦  ∈  𝑥 𝑦  ≼  ω | 
						
							| 115 | 114 | nfn | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑦  ∈  𝑥 𝑦  ≼  ω | 
						
							| 116 | 113 115 | nfan | ⊢ Ⅎ 𝑦 ( 𝑥  ∈  𝒫  𝑆  ∧  ¬  ∀ 𝑦  ∈  𝑥 𝑦  ≼  ω ) | 
						
							| 117 |  | nfv | ⊢ Ⅎ 𝑦 ( 𝐴  ∖  ∪  𝑥 )  ≼  ω | 
						
							| 118 |  | elssuni | ⊢ ( 𝑦  ∈  𝑥  →  𝑦  ⊆  ∪  𝑥 ) | 
						
							| 119 | 118 | 3ad2ant2 | ⊢ ( ( 𝑥  ∈  𝒫  𝑆  ∧  𝑦  ∈  𝑥  ∧  ¬  𝑦  ≼  ω )  →  𝑦  ⊆  ∪  𝑥 ) | 
						
							| 120 | 119 | sscond | ⊢ ( ( 𝑥  ∈  𝒫  𝑆  ∧  𝑦  ∈  𝑥  ∧  ¬  𝑦  ≼  ω )  →  ( 𝐴  ∖  ∪  𝑥 )  ⊆  ( 𝐴  ∖  𝑦 ) ) | 
						
							| 121 | 92 | 3adant3 | ⊢ ( ( 𝑥  ∈  𝒫  𝑆  ∧  𝑦  ∈  𝑥  ∧  ¬  𝑦  ≼  ω )  →  𝑦  ∈  𝑆 ) | 
						
							| 122 |  | simp3 | ⊢ ( ( 𝑥  ∈  𝒫  𝑆  ∧  𝑦  ∈  𝑥  ∧  ¬  𝑦  ≼  ω )  →  ¬  𝑦  ≼  ω ) | 
						
							| 123 | 72 | reqabi | ⊢ ( 𝑦  ∈  𝑆  ↔  ( 𝑦  ∈  𝒫  𝐴  ∧  ( 𝑦  ≼  ω  ∨  ( 𝐴  ∖  𝑦 )  ≼  ω ) ) ) | 
						
							| 124 | 123 | biimpi | ⊢ ( 𝑦  ∈  𝑆  →  ( 𝑦  ∈  𝒫  𝐴  ∧  ( 𝑦  ≼  ω  ∨  ( 𝐴  ∖  𝑦 )  ≼  ω ) ) ) | 
						
							| 125 | 124 | simprd | ⊢ ( 𝑦  ∈  𝑆  →  ( 𝑦  ≼  ω  ∨  ( 𝐴  ∖  𝑦 )  ≼  ω ) ) | 
						
							| 126 | 125 | adantr | ⊢ ( ( 𝑦  ∈  𝑆  ∧  ¬  𝑦  ≼  ω )  →  ( 𝑦  ≼  ω  ∨  ( 𝐴  ∖  𝑦 )  ≼  ω ) ) | 
						
							| 127 |  | simpr | ⊢ ( ( 𝑦  ∈  𝑆  ∧  ¬  𝑦  ≼  ω )  →  ¬  𝑦  ≼  ω ) | 
						
							| 128 |  | pm2.53 | ⊢ ( ( 𝑦  ≼  ω  ∨  ( 𝐴  ∖  𝑦 )  ≼  ω )  →  ( ¬  𝑦  ≼  ω  →  ( 𝐴  ∖  𝑦 )  ≼  ω ) ) | 
						
							| 129 | 126 127 128 | sylc | ⊢ ( ( 𝑦  ∈  𝑆  ∧  ¬  𝑦  ≼  ω )  →  ( 𝐴  ∖  𝑦 )  ≼  ω ) | 
						
							| 130 | 121 122 129 | syl2anc | ⊢ ( ( 𝑥  ∈  𝒫  𝑆  ∧  𝑦  ∈  𝑥  ∧  ¬  𝑦  ≼  ω )  →  ( 𝐴  ∖  𝑦 )  ≼  ω ) | 
						
							| 131 |  | ssct | ⊢ ( ( ( 𝐴  ∖  ∪  𝑥 )  ⊆  ( 𝐴  ∖  𝑦 )  ∧  ( 𝐴  ∖  𝑦 )  ≼  ω )  →  ( 𝐴  ∖  ∪  𝑥 )  ≼  ω ) | 
						
							| 132 | 120 130 131 | syl2anc | ⊢ ( ( 𝑥  ∈  𝒫  𝑆  ∧  𝑦  ∈  𝑥  ∧  ¬  𝑦  ≼  ω )  →  ( 𝐴  ∖  ∪  𝑥 )  ≼  ω ) | 
						
							| 133 | 132 | 3exp | ⊢ ( 𝑥  ∈  𝒫  𝑆  →  ( 𝑦  ∈  𝑥  →  ( ¬  𝑦  ≼  ω  →  ( 𝐴  ∖  ∪  𝑥 )  ≼  ω ) ) ) | 
						
							| 134 | 133 | adantr | ⊢ ( ( 𝑥  ∈  𝒫  𝑆  ∧  ¬  ∀ 𝑦  ∈  𝑥 𝑦  ≼  ω )  →  ( 𝑦  ∈  𝑥  →  ( ¬  𝑦  ≼  ω  →  ( 𝐴  ∖  ∪  𝑥 )  ≼  ω ) ) ) | 
						
							| 135 | 116 117 134 | rexlimd | ⊢ ( ( 𝑥  ∈  𝒫  𝑆  ∧  ¬  ∀ 𝑦  ∈  𝑥 𝑦  ≼  ω )  →  ( ∃ 𝑦  ∈  𝑥 ¬  𝑦  ≼  ω  →  ( 𝐴  ∖  ∪  𝑥 )  ≼  ω ) ) | 
						
							| 136 | 112 135 | mpd | ⊢ ( ( 𝑥  ∈  𝒫  𝑆  ∧  ¬  ∀ 𝑦  ∈  𝑥 𝑦  ≼  ω )  →  ( 𝐴  ∖  ∪  𝑥 )  ≼  ω ) | 
						
							| 137 |  | olc | ⊢ ( ( 𝐴  ∖  ∪  𝑥 )  ≼  ω  →  ( ∪  𝑥  ≼  ω  ∨  ( 𝐴  ∖  ∪  𝑥 )  ≼  ω ) ) | 
						
							| 138 | 136 137 | syl | ⊢ ( ( 𝑥  ∈  𝒫  𝑆  ∧  ¬  ∀ 𝑦  ∈  𝑥 𝑦  ≼  ω )  →  ( ∪  𝑥  ≼  ω  ∨  ( 𝐴  ∖  ∪  𝑥 )  ≼  ω ) ) | 
						
							| 139 | 138 | adantlr | ⊢ ( ( ( 𝑥  ∈  𝒫  𝑆  ∧  𝑥  ≼  ω )  ∧  ¬  ∀ 𝑦  ∈  𝑥 𝑦  ≼  ω )  →  ( ∪  𝑥  ≼  ω  ∨  ( 𝐴  ∖  ∪  𝑥 )  ≼  ω ) ) | 
						
							| 140 | 108 139 | pm2.61dan | ⊢ ( ( 𝑥  ∈  𝒫  𝑆  ∧  𝑥  ≼  ω )  →  ( ∪  𝑥  ≼  ω  ∨  ( 𝐴  ∖  ∪  𝑥 )  ≼  ω ) ) | 
						
							| 141 | 103 140 | jca | ⊢ ( ( 𝑥  ∈  𝒫  𝑆  ∧  𝑥  ≼  ω )  →  ( ∪  𝑥  ∈  𝒫  𝐴  ∧  ( ∪  𝑥  ≼  ω  ∨  ( 𝐴  ∖  ∪  𝑥 )  ≼  ω ) ) ) | 
						
							| 142 |  | breq1 | ⊢ ( 𝑦  =  ∪  𝑥  →  ( 𝑦  ≼  ω  ↔  ∪  𝑥  ≼  ω ) ) | 
						
							| 143 |  | difeq2 | ⊢ ( 𝑦  =  ∪  𝑥  →  ( 𝐴  ∖  𝑦 )  =  ( 𝐴  ∖  ∪  𝑥 ) ) | 
						
							| 144 | 143 | breq1d | ⊢ ( 𝑦  =  ∪  𝑥  →  ( ( 𝐴  ∖  𝑦 )  ≼  ω  ↔  ( 𝐴  ∖  ∪  𝑥 )  ≼  ω ) ) | 
						
							| 145 | 142 144 | orbi12d | ⊢ ( 𝑦  =  ∪  𝑥  →  ( ( 𝑦  ≼  ω  ∨  ( 𝐴  ∖  𝑦 )  ≼  ω )  ↔  ( ∪  𝑥  ≼  ω  ∨  ( 𝐴  ∖  ∪  𝑥 )  ≼  ω ) ) ) | 
						
							| 146 | 145 72 | elrab2 | ⊢ ( ∪  𝑥  ∈  𝑆  ↔  ( ∪  𝑥  ∈  𝒫  𝐴  ∧  ( ∪  𝑥  ≼  ω  ∨  ( 𝐴  ∖  ∪  𝑥 )  ≼  ω ) ) ) | 
						
							| 147 | 141 146 | sylibr | ⊢ ( ( 𝑥  ∈  𝒫  𝑆  ∧  𝑥  ≼  ω )  →  ∪  𝑥  ∈  𝑆 ) | 
						
							| 148 | 147 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝒫  𝑆  ∧  𝑥  ≼  ω )  →  ∪  𝑥  ∈  𝑆 ) | 
						
							| 149 | 6 20 45 88 148 | issald | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) |