Description: Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rabeq2i.1 | ⊢ 𝐴 = { 𝑥 ∈ 𝐵 ∣ 𝜑 } | |
Assertion | rabeq2i | ⊢ ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq2i.1 | ⊢ 𝐴 = { 𝑥 ∈ 𝐵 ∣ 𝜑 } | |
2 | 1 | eleq2i | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) |
3 | rabid | ⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) | |
4 | 2 3 | bitri | ⊢ ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) |