| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sssalgen.1 | ⊢ 𝑆  =  ( SalGen ‘ 𝑋 ) | 
						
							| 2 |  | ssint | ⊢ ( 𝑋  ⊆  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  ↔  ∀ 𝑡  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } 𝑋  ⊆  𝑡 ) | 
						
							| 3 |  | unieq | ⊢ ( 𝑠  =  𝑡  →  ∪  𝑠  =  ∪  𝑡 ) | 
						
							| 4 | 3 | eqeq1d | ⊢ ( 𝑠  =  𝑡  →  ( ∪  𝑠  =  ∪  𝑋  ↔  ∪  𝑡  =  ∪  𝑋 ) ) | 
						
							| 5 |  | sseq2 | ⊢ ( 𝑠  =  𝑡  →  ( 𝑋  ⊆  𝑠  ↔  𝑋  ⊆  𝑡 ) ) | 
						
							| 6 | 4 5 | anbi12d | ⊢ ( 𝑠  =  𝑡  →  ( ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 )  ↔  ( ∪  𝑡  =  ∪  𝑋  ∧  𝑋  ⊆  𝑡 ) ) ) | 
						
							| 7 | 6 | elrab | ⊢ ( 𝑡  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  ↔  ( 𝑡  ∈  SAlg  ∧  ( ∪  𝑡  =  ∪  𝑋  ∧  𝑋  ⊆  𝑡 ) ) ) | 
						
							| 8 | 7 | biimpi | ⊢ ( 𝑡  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  →  ( 𝑡  ∈  SAlg  ∧  ( ∪  𝑡  =  ∪  𝑋  ∧  𝑋  ⊆  𝑡 ) ) ) | 
						
							| 9 | 8 | simprrd | ⊢ ( 𝑡  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  →  𝑋  ⊆  𝑡 ) | 
						
							| 10 | 2 9 | mprgbir | ⊢ 𝑋  ⊆  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } | 
						
							| 11 | 10 | a1i | ⊢ ( 𝑋  ∈  𝑉  →  𝑋  ⊆  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } ) | 
						
							| 12 |  | salgenval | ⊢ ( 𝑋  ∈  𝑉  →  ( SalGen ‘ 𝑋 )  =  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } ) | 
						
							| 13 | 1 12 | eqtr2id | ⊢ ( 𝑋  ∈  𝑉  →  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  =  𝑆 ) | 
						
							| 14 | 11 13 | sseqtrd | ⊢ ( 𝑋  ∈  𝑉  →  𝑋  ⊆  𝑆 ) |