Metamath Proof Explorer


Theorem sssalgen

Description: A set is a subset of the sigma-algebra it generates. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypothesis sssalgen.1 𝑆 = ( SalGen ‘ 𝑋 )
Assertion sssalgen ( 𝑋𝑉𝑋𝑆 )

Proof

Step Hyp Ref Expression
1 sssalgen.1 𝑆 = ( SalGen ‘ 𝑋 )
2 ssint ( 𝑋 { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ↔ ∀ 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } 𝑋𝑡 )
3 unieq ( 𝑠 = 𝑡 𝑠 = 𝑡 )
4 3 eqeq1d ( 𝑠 = 𝑡 → ( 𝑠 = 𝑋 𝑡 = 𝑋 ) )
5 sseq2 ( 𝑠 = 𝑡 → ( 𝑋𝑠𝑋𝑡 ) )
6 4 5 anbi12d ( 𝑠 = 𝑡 → ( ( 𝑠 = 𝑋𝑋𝑠 ) ↔ ( 𝑡 = 𝑋𝑋𝑡 ) ) )
7 6 elrab ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ↔ ( 𝑡 ∈ SAlg ∧ ( 𝑡 = 𝑋𝑋𝑡 ) ) )
8 7 biimpi ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } → ( 𝑡 ∈ SAlg ∧ ( 𝑡 = 𝑋𝑋𝑡 ) ) )
9 8 simprrd ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } → 𝑋𝑡 )
10 2 9 mprgbir 𝑋 { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) }
11 10 a1i ( 𝑋𝑉𝑋 { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } )
12 salgenval ( 𝑋𝑉 → ( SalGen ‘ 𝑋 ) = { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } )
13 1 12 eqtr2id ( 𝑋𝑉 { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } = 𝑆 )
14 11 13 sseqtrd ( 𝑋𝑉𝑋𝑆 )