Step |
Hyp |
Ref |
Expression |
1 |
|
sssalgen.1 |
⊢ 𝑆 = ( SalGen ‘ 𝑋 ) |
2 |
|
ssint |
⊢ ( 𝑋 ⊆ ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ↔ ∀ 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } 𝑋 ⊆ 𝑡 ) |
3 |
|
unieq |
⊢ ( 𝑠 = 𝑡 → ∪ 𝑠 = ∪ 𝑡 ) |
4 |
3
|
eqeq1d |
⊢ ( 𝑠 = 𝑡 → ( ∪ 𝑠 = ∪ 𝑋 ↔ ∪ 𝑡 = ∪ 𝑋 ) ) |
5 |
|
sseq2 |
⊢ ( 𝑠 = 𝑡 → ( 𝑋 ⊆ 𝑠 ↔ 𝑋 ⊆ 𝑡 ) ) |
6 |
4 5
|
anbi12d |
⊢ ( 𝑠 = 𝑡 → ( ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) ↔ ( ∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡 ) ) ) |
7 |
6
|
elrab |
⊢ ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ↔ ( 𝑡 ∈ SAlg ∧ ( ∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡 ) ) ) |
8 |
7
|
biimpi |
⊢ ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } → ( 𝑡 ∈ SAlg ∧ ( ∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡 ) ) ) |
9 |
8
|
simprrd |
⊢ ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } → 𝑋 ⊆ 𝑡 ) |
10 |
2 9
|
mprgbir |
⊢ 𝑋 ⊆ ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } |
11 |
10
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ⊆ ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) |
12 |
|
salgenval |
⊢ ( 𝑋 ∈ 𝑉 → ( SalGen ‘ 𝑋 ) = ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) |
13 |
1 12
|
eqtr2id |
⊢ ( 𝑋 ∈ 𝑉 → ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } = 𝑆 ) |
14 |
11 13
|
sseqtrd |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ⊆ 𝑆 ) |