| Step | Hyp | Ref | Expression | 
						
							| 1 |  | salgenss.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 2 |  | salgenss.g | ⊢ 𝐺  =  ( SalGen ‘ 𝑋 ) | 
						
							| 3 |  | salgenss.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 4 |  | salgenss.i | ⊢ ( 𝜑  →  𝑋  ⊆  𝑆 ) | 
						
							| 5 |  | salgenss.u | ⊢ ( 𝜑  →  ∪  𝑆  =  ∪  𝑋 ) | 
						
							| 6 | 2 | a1i | ⊢ ( 𝜑  →  𝐺  =  ( SalGen ‘ 𝑋 ) ) | 
						
							| 7 |  | salgenval | ⊢ ( 𝑋  ∈  𝑉  →  ( SalGen ‘ 𝑋 )  =  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } ) | 
						
							| 8 | 1 7 | syl | ⊢ ( 𝜑  →  ( SalGen ‘ 𝑋 )  =  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } ) | 
						
							| 9 | 6 8 | eqtrd | ⊢ ( 𝜑  →  𝐺  =  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } ) | 
						
							| 10 | 5 4 | jca | ⊢ ( 𝜑  →  ( ∪  𝑆  =  ∪  𝑋  ∧  𝑋  ⊆  𝑆 ) ) | 
						
							| 11 | 3 10 | jca | ⊢ ( 𝜑  →  ( 𝑆  ∈  SAlg  ∧  ( ∪  𝑆  =  ∪  𝑋  ∧  𝑋  ⊆  𝑆 ) ) ) | 
						
							| 12 |  | unieq | ⊢ ( 𝑠  =  𝑆  →  ∪  𝑠  =  ∪  𝑆 ) | 
						
							| 13 | 12 | eqeq1d | ⊢ ( 𝑠  =  𝑆  →  ( ∪  𝑠  =  ∪  𝑋  ↔  ∪  𝑆  =  ∪  𝑋 ) ) | 
						
							| 14 |  | sseq2 | ⊢ ( 𝑠  =  𝑆  →  ( 𝑋  ⊆  𝑠  ↔  𝑋  ⊆  𝑆 ) ) | 
						
							| 15 | 13 14 | anbi12d | ⊢ ( 𝑠  =  𝑆  →  ( ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 )  ↔  ( ∪  𝑆  =  ∪  𝑋  ∧  𝑋  ⊆  𝑆 ) ) ) | 
						
							| 16 | 15 | elrab | ⊢ ( 𝑆  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  ↔  ( 𝑆  ∈  SAlg  ∧  ( ∪  𝑆  =  ∪  𝑋  ∧  𝑋  ⊆  𝑆 ) ) ) | 
						
							| 17 | 11 16 | sylibr | ⊢ ( 𝜑  →  𝑆  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } ) | 
						
							| 18 |  | intss1 | ⊢ ( 𝑆  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  →  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  ⊆  𝑆 ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝜑  →  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  ⊆  𝑆 ) | 
						
							| 20 | 9 19 | eqsstrd | ⊢ ( 𝜑  →  𝐺  ⊆  𝑆 ) |