Metamath Proof Explorer


Theorem salgenss

Description: The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set. Proposition 111G (b) of Fremlin1 p. 13. Notice that the condition "on the same base set" is needed, see the counterexample salgensscntex , where a sigma-algebra is shown that includes a set, but does not include the sigma-algebra generated (the key is that its base set is larger than the base set of the generating set). (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses salgenss.x ( 𝜑𝑋𝑉 )
salgenss.g 𝐺 = ( SalGen ‘ 𝑋 )
salgenss.s ( 𝜑𝑆 ∈ SAlg )
salgenss.i ( 𝜑𝑋𝑆 )
salgenss.u ( 𝜑 𝑆 = 𝑋 )
Assertion salgenss ( 𝜑𝐺𝑆 )

Proof

Step Hyp Ref Expression
1 salgenss.x ( 𝜑𝑋𝑉 )
2 salgenss.g 𝐺 = ( SalGen ‘ 𝑋 )
3 salgenss.s ( 𝜑𝑆 ∈ SAlg )
4 salgenss.i ( 𝜑𝑋𝑆 )
5 salgenss.u ( 𝜑 𝑆 = 𝑋 )
6 2 a1i ( 𝜑𝐺 = ( SalGen ‘ 𝑋 ) )
7 salgenval ( 𝑋𝑉 → ( SalGen ‘ 𝑋 ) = { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } )
8 1 7 syl ( 𝜑 → ( SalGen ‘ 𝑋 ) = { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } )
9 6 8 eqtrd ( 𝜑𝐺 = { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } )
10 5 4 jca ( 𝜑 → ( 𝑆 = 𝑋𝑋𝑆 ) )
11 3 10 jca ( 𝜑 → ( 𝑆 ∈ SAlg ∧ ( 𝑆 = 𝑋𝑋𝑆 ) ) )
12 unieq ( 𝑠 = 𝑆 𝑠 = 𝑆 )
13 12 eqeq1d ( 𝑠 = 𝑆 → ( 𝑠 = 𝑋 𝑆 = 𝑋 ) )
14 sseq2 ( 𝑠 = 𝑆 → ( 𝑋𝑠𝑋𝑆 ) )
15 13 14 anbi12d ( 𝑠 = 𝑆 → ( ( 𝑠 = 𝑋𝑋𝑠 ) ↔ ( 𝑆 = 𝑋𝑋𝑆 ) ) )
16 15 elrab ( 𝑆 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ↔ ( 𝑆 ∈ SAlg ∧ ( 𝑆 = 𝑋𝑋𝑆 ) ) )
17 11 16 sylibr ( 𝜑𝑆 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } )
18 intss1 ( 𝑆 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } → { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ⊆ 𝑆 )
19 17 18 syl ( 𝜑 { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ⊆ 𝑆 )
20 9 19 eqsstrd ( 𝜑𝐺𝑆 )