Step |
Hyp |
Ref |
Expression |
1 |
|
salgenss.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
2 |
|
salgenss.g |
⊢ 𝐺 = ( SalGen ‘ 𝑋 ) |
3 |
|
salgenss.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
4 |
|
salgenss.i |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
5 |
|
salgenss.u |
⊢ ( 𝜑 → ∪ 𝑆 = ∪ 𝑋 ) |
6 |
2
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( SalGen ‘ 𝑋 ) ) |
7 |
|
salgenval |
⊢ ( 𝑋 ∈ 𝑉 → ( SalGen ‘ 𝑋 ) = ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → ( SalGen ‘ 𝑋 ) = ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) |
9 |
6 8
|
eqtrd |
⊢ ( 𝜑 → 𝐺 = ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) |
10 |
5 4
|
jca |
⊢ ( 𝜑 → ( ∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆 ) ) |
11 |
3 10
|
jca |
⊢ ( 𝜑 → ( 𝑆 ∈ SAlg ∧ ( ∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆 ) ) ) |
12 |
|
unieq |
⊢ ( 𝑠 = 𝑆 → ∪ 𝑠 = ∪ 𝑆 ) |
13 |
12
|
eqeq1d |
⊢ ( 𝑠 = 𝑆 → ( ∪ 𝑠 = ∪ 𝑋 ↔ ∪ 𝑆 = ∪ 𝑋 ) ) |
14 |
|
sseq2 |
⊢ ( 𝑠 = 𝑆 → ( 𝑋 ⊆ 𝑠 ↔ 𝑋 ⊆ 𝑆 ) ) |
15 |
13 14
|
anbi12d |
⊢ ( 𝑠 = 𝑆 → ( ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) ↔ ( ∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆 ) ) ) |
16 |
15
|
elrab |
⊢ ( 𝑆 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ↔ ( 𝑆 ∈ SAlg ∧ ( ∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆 ) ) ) |
17 |
11 16
|
sylibr |
⊢ ( 𝜑 → 𝑆 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) |
18 |
|
intss1 |
⊢ ( 𝑆 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } → ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ⊆ 𝑆 ) |
19 |
17 18
|
syl |
⊢ ( 𝜑 → ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ⊆ 𝑆 ) |
20 |
9 19
|
eqsstrd |
⊢ ( 𝜑 → 𝐺 ⊆ 𝑆 ) |