Metamath Proof Explorer


Theorem salgenss

Description: The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set. Proposition 111G (b) of Fremlin1 p. 13. Notice that the condition "on the same base set" is needed, see the counterexample salgensscntex , where a sigma-algebra is shown that includes a set, but does not include the sigma-algebra generated (the key is that its base set is larger than the base set of the generating set). (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses salgenss.x φ X V
salgenss.g G = SalGen X
salgenss.s φ S SAlg
salgenss.i φ X S
salgenss.u φ S = X
Assertion salgenss φ G S

Proof

Step Hyp Ref Expression
1 salgenss.x φ X V
2 salgenss.g G = SalGen X
3 salgenss.s φ S SAlg
4 salgenss.i φ X S
5 salgenss.u φ S = X
6 2 a1i φ G = SalGen X
7 salgenval X V SalGen X = s SAlg | s = X X s
8 1 7 syl φ SalGen X = s SAlg | s = X X s
9 6 8 eqtrd φ G = s SAlg | s = X X s
10 5 4 jca φ S = X X S
11 3 10 jca φ S SAlg S = X X S
12 unieq s = S s = S
13 12 eqeq1d s = S s = X S = X
14 sseq2 s = S X s X S
15 13 14 anbi12d s = S s = X X s S = X X S
16 15 elrab S s SAlg | s = X X s S SAlg S = X X S
17 11 16 sylibr φ S s SAlg | s = X X s
18 intss1 S s SAlg | s = X X s s SAlg | s = X X s S
19 17 18 syl φ s SAlg | s = X X s S
20 9 19 eqsstrd φ G S