Metamath Proof Explorer


Theorem salgenuni

Description: The base set of the sigma-algebra generated by a set is the union of the set itself. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses salgenuni.x φXV
salgenuni.s S=SalGenX
salgenuni.u U=X
Assertion salgenuni φS=U

Proof

Step Hyp Ref Expression
1 salgenuni.x φXV
2 salgenuni.s S=SalGenX
3 salgenuni.u U=X
4 2 a1i φS=SalGenX
5 salgenval XVSalGenX=sSAlg|s=XXs
6 1 5 syl φSalGenX=sSAlg|s=XXs
7 4 6 eqtrd φS=sSAlg|s=XXs
8 7 unieqd φS=sSAlg|s=XXs
9 ssrab2 sSAlg|s=XXsSAlg
10 9 a1i φsSAlg|s=XXsSAlg
11 salgenn0 XVsSAlg|s=XXs
12 1 11 syl φsSAlg|s=XXs
13 unieq s=ts=t
14 13 eqeq1d s=ts=Xt=X
15 sseq2 s=tXsXt
16 14 15 anbi12d s=ts=XXst=XXt
17 16 elrab tsSAlg|s=XXstSAlgt=XXt
18 17 biimpi tsSAlg|s=XXstSAlgt=XXt
19 18 simprld tsSAlg|s=XXst=X
20 3 eqcomi X=U
21 20 a1i tsSAlg|s=XXsX=U
22 19 21 eqtrd tsSAlg|s=XXst=U
23 22 adantl φtsSAlg|s=XXst=U
24 10 12 23 intsaluni φsSAlg|s=XXs=U
25 8 24 eqtrd φS=U