Metamath Proof Explorer


Theorem salgenuni

Description: The base set of the sigma-algebra generated by a set is the union of the set itself. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses salgenuni.x φ X V
salgenuni.s S = SalGen X
salgenuni.u U = X
Assertion salgenuni φ S = U

Proof

Step Hyp Ref Expression
1 salgenuni.x φ X V
2 salgenuni.s S = SalGen X
3 salgenuni.u U = X
4 2 a1i φ S = SalGen X
5 salgenval X V SalGen X = s SAlg | s = X X s
6 1 5 syl φ SalGen X = s SAlg | s = X X s
7 4 6 eqtrd φ S = s SAlg | s = X X s
8 7 unieqd φ S = s SAlg | s = X X s
9 ssrab2 s SAlg | s = X X s SAlg
10 9 a1i φ s SAlg | s = X X s SAlg
11 salgenn0 X V s SAlg | s = X X s
12 1 11 syl φ s SAlg | s = X X s
13 unieq s = t s = t
14 13 eqeq1d s = t s = X t = X
15 sseq2 s = t X s X t
16 14 15 anbi12d s = t s = X X s t = X X t
17 16 elrab t s SAlg | s = X X s t SAlg t = X X t
18 17 biimpi t s SAlg | s = X X s t SAlg t = X X t
19 18 simprld t s SAlg | s = X X s t = X
20 3 eqcomi X = U
21 20 a1i t s SAlg | s = X X s X = U
22 19 21 eqtrd t s SAlg | s = X X s t = U
23 22 adantl φ t s SAlg | s = X X s t = U
24 10 12 23 intsaluni φ s SAlg | s = X X s = U
25 8 24 eqtrd φ S = U