Metamath Proof Explorer


Theorem intsaluni

Description: The union of an arbitrary intersection of sigma-algebras on the same set X , is X . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses intsaluni.ga φGSAlg
intsaluni.gn0 φG
intsaluni.x φsGs=X
Assertion intsaluni φG=X

Proof

Step Hyp Ref Expression
1 intsaluni.ga φGSAlg
2 intsaluni.gn0 φG
3 intsaluni.x φsGs=X
4 nfv sφ
5 nfv sG=X
6 n0 GssG
7 6 biimpi GssG
8 2 7 syl φssG
9 intss1 sGGs
10 9 unissd sGGs
11 10 adantl φsGGs
12 11 3 sseqtrd φsGGX
13 3 adantr φsGtGs=X
14 eleq1w s=tsGtG
15 14 anbi2d s=tφsGφtG
16 unieq s=ts=t
17 16 eqeq1d s=ts=Xt=X
18 15 17 imbi12d s=tφsGs=XφtGt=X
19 18 3 chvarvv φtGt=X
20 19 eqcomd φtGX=t
21 20 adantlr φsGtGX=t
22 13 21 eqtrd φsGtGs=t
23 1 sselda φtGtSAlg
24 saluni tSAlgtt
25 23 24 syl φtGtt
26 25 adantlr φsGtGtt
27 22 26 eqeltrd φsGtGst
28 27 ralrimiva φsGtGst
29 uniexg sGsV
30 29 adantl φsGsV
31 elintg sVsGtGst
32 30 31 syl φsGsGtGst
33 28 32 mpbird φsGsG
34 33 adantr φsGxXsG
35 simpr φsGxXxX
36 3 eqcomd φsGX=s
37 36 adantr φsGxXX=s
38 35 37 eleqtrd φsGxXxs
39 eleq2 y=sxyxs
40 39 rspcev sGxsyGxy
41 34 38 40 syl2anc φsGxXyGxy
42 eluni2 xGyGxy
43 41 42 sylibr φsGxXxG
44 12 43 eqelssd φsGG=X
45 44 ex φsGG=X
46 4 5 8 45 exlimimdd φG=X