Description: The union of an arbitrary intersection of sigma-algebras on the same set X , is X . (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | intsaluni.ga | |
|
intsaluni.gn0 | |
||
intsaluni.x | |
||
Assertion | intsaluni | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intsaluni.ga | |
|
2 | intsaluni.gn0 | |
|
3 | intsaluni.x | |
|
4 | nfv | |
|
5 | nfv | |
|
6 | n0 | |
|
7 | 6 | biimpi | |
8 | 2 7 | syl | |
9 | intss1 | |
|
10 | 9 | unissd | |
11 | 10 | adantl | |
12 | 11 3 | sseqtrd | |
13 | 3 | adantr | |
14 | eleq1w | |
|
15 | 14 | anbi2d | |
16 | unieq | |
|
17 | 16 | eqeq1d | |
18 | 15 17 | imbi12d | |
19 | 18 3 | chvarvv | |
20 | 19 | eqcomd | |
21 | 20 | adantlr | |
22 | 13 21 | eqtrd | |
23 | 1 | sselda | |
24 | saluni | |
|
25 | 23 24 | syl | |
26 | 25 | adantlr | |
27 | 22 26 | eqeltrd | |
28 | 27 | ralrimiva | |
29 | uniexg | |
|
30 | 29 | adantl | |
31 | elintg | |
|
32 | 30 31 | syl | |
33 | 28 32 | mpbird | |
34 | 33 | adantr | |
35 | simpr | |
|
36 | 3 | eqcomd | |
37 | 36 | adantr | |
38 | 35 37 | eleqtrd | |
39 | eleq2 | |
|
40 | 39 | rspcev | |
41 | 34 38 40 | syl2anc | |
42 | eluni2 | |
|
43 | 41 42 | sylibr | |
44 | 12 43 | eqelssd | |
45 | 44 | ex | |
46 | 4 5 8 45 | exlimimdd | |