Step |
Hyp |
Ref |
Expression |
1 |
|
intsaluni.ga |
⊢ ( 𝜑 → 𝐺 ⊆ SAlg ) |
2 |
|
intsaluni.gn0 |
⊢ ( 𝜑 → 𝐺 ≠ ∅ ) |
3 |
|
intsaluni.x |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → ∪ 𝑠 = 𝑋 ) |
4 |
|
nfv |
⊢ Ⅎ 𝑠 𝜑 |
5 |
|
nfv |
⊢ Ⅎ 𝑠 ∪ ∩ 𝐺 = 𝑋 |
6 |
|
n0 |
⊢ ( 𝐺 ≠ ∅ ↔ ∃ 𝑠 𝑠 ∈ 𝐺 ) |
7 |
6
|
biimpi |
⊢ ( 𝐺 ≠ ∅ → ∃ 𝑠 𝑠 ∈ 𝐺 ) |
8 |
2 7
|
syl |
⊢ ( 𝜑 → ∃ 𝑠 𝑠 ∈ 𝐺 ) |
9 |
|
intss1 |
⊢ ( 𝑠 ∈ 𝐺 → ∩ 𝐺 ⊆ 𝑠 ) |
10 |
9
|
unissd |
⊢ ( 𝑠 ∈ 𝐺 → ∪ ∩ 𝐺 ⊆ ∪ 𝑠 ) |
11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → ∪ ∩ 𝐺 ⊆ ∪ 𝑠 ) |
12 |
11 3
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → ∪ ∩ 𝐺 ⊆ 𝑋 ) |
13 |
3
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) ∧ 𝑡 ∈ 𝐺 ) → ∪ 𝑠 = 𝑋 ) |
14 |
|
eleq1w |
⊢ ( 𝑠 = 𝑡 → ( 𝑠 ∈ 𝐺 ↔ 𝑡 ∈ 𝐺 ) ) |
15 |
14
|
anbi2d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) ↔ ( 𝜑 ∧ 𝑡 ∈ 𝐺 ) ) ) |
16 |
|
unieq |
⊢ ( 𝑠 = 𝑡 → ∪ 𝑠 = ∪ 𝑡 ) |
17 |
16
|
eqeq1d |
⊢ ( 𝑠 = 𝑡 → ( ∪ 𝑠 = 𝑋 ↔ ∪ 𝑡 = 𝑋 ) ) |
18 |
15 17
|
imbi12d |
⊢ ( 𝑠 = 𝑡 → ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → ∪ 𝑠 = 𝑋 ) ↔ ( ( 𝜑 ∧ 𝑡 ∈ 𝐺 ) → ∪ 𝑡 = 𝑋 ) ) ) |
19 |
18 3
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐺 ) → ∪ 𝑡 = 𝑋 ) |
20 |
19
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐺 ) → 𝑋 = ∪ 𝑡 ) |
21 |
20
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) ∧ 𝑡 ∈ 𝐺 ) → 𝑋 = ∪ 𝑡 ) |
22 |
13 21
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) ∧ 𝑡 ∈ 𝐺 ) → ∪ 𝑠 = ∪ 𝑡 ) |
23 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐺 ) → 𝑡 ∈ SAlg ) |
24 |
|
saluni |
⊢ ( 𝑡 ∈ SAlg → ∪ 𝑡 ∈ 𝑡 ) |
25 |
23 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐺 ) → ∪ 𝑡 ∈ 𝑡 ) |
26 |
25
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) ∧ 𝑡 ∈ 𝐺 ) → ∪ 𝑡 ∈ 𝑡 ) |
27 |
22 26
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) ∧ 𝑡 ∈ 𝐺 ) → ∪ 𝑠 ∈ 𝑡 ) |
28 |
27
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → ∀ 𝑡 ∈ 𝐺 ∪ 𝑠 ∈ 𝑡 ) |
29 |
|
uniexg |
⊢ ( 𝑠 ∈ 𝐺 → ∪ 𝑠 ∈ V ) |
30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → ∪ 𝑠 ∈ V ) |
31 |
|
elintg |
⊢ ( ∪ 𝑠 ∈ V → ( ∪ 𝑠 ∈ ∩ 𝐺 ↔ ∀ 𝑡 ∈ 𝐺 ∪ 𝑠 ∈ 𝑡 ) ) |
32 |
30 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → ( ∪ 𝑠 ∈ ∩ 𝐺 ↔ ∀ 𝑡 ∈ 𝐺 ∪ 𝑠 ∈ 𝑡 ) ) |
33 |
28 32
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → ∪ 𝑠 ∈ ∩ 𝐺 ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ∪ 𝑠 ∈ ∩ 𝐺 ) |
35 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
36 |
3
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → 𝑋 = ∪ 𝑠 ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑋 = ∪ 𝑠 ) |
38 |
35 37
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ ∪ 𝑠 ) |
39 |
|
eleq2 |
⊢ ( 𝑦 = ∪ 𝑠 → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ∪ 𝑠 ) ) |
40 |
39
|
rspcev |
⊢ ( ( ∪ 𝑠 ∈ ∩ 𝐺 ∧ 𝑥 ∈ ∪ 𝑠 ) → ∃ 𝑦 ∈ ∩ 𝐺 𝑥 ∈ 𝑦 ) |
41 |
34 38 40
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑦 ∈ ∩ 𝐺 𝑥 ∈ 𝑦 ) |
42 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ ∩ 𝐺 ↔ ∃ 𝑦 ∈ ∩ 𝐺 𝑥 ∈ 𝑦 ) |
43 |
41 42
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ ∪ ∩ 𝐺 ) |
44 |
12 43
|
eqelssd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → ∪ ∩ 𝐺 = 𝑋 ) |
45 |
44
|
ex |
⊢ ( 𝜑 → ( 𝑠 ∈ 𝐺 → ∪ ∩ 𝐺 = 𝑋 ) ) |
46 |
4 5 8 45
|
exlimimdd |
⊢ ( 𝜑 → ∪ ∩ 𝐺 = 𝑋 ) |