Metamath Proof Explorer


Theorem saluni

Description: A set is an element of any sigma-algebra on it . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion saluni ( 𝑆 ∈ SAlg → 𝑆𝑆 )

Proof

Step Hyp Ref Expression
1 dif0 ( 𝑆 ∖ ∅ ) = 𝑆
2 0sal ( 𝑆 ∈ SAlg → ∅ ∈ 𝑆 )
3 saldifcl ( ( 𝑆 ∈ SAlg ∧ ∅ ∈ 𝑆 ) → ( 𝑆 ∖ ∅ ) ∈ 𝑆 )
4 2 3 mpdan ( 𝑆 ∈ SAlg → ( 𝑆 ∖ ∅ ) ∈ 𝑆 )
5 1 4 eqeltrrid ( 𝑆 ∈ SAlg → 𝑆𝑆 )