Metamath Proof Explorer
Description: A set is an element of any sigma-algebra on it . (Contributed by Glauco
Siliprandi, 17-Aug-2020)
|
|
Ref |
Expression |
|
Assertion |
saluni |
⊢ ( 𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
dif0 |
⊢ ( ∪ 𝑆 ∖ ∅ ) = ∪ 𝑆 |
2 |
|
0sal |
⊢ ( 𝑆 ∈ SAlg → ∅ ∈ 𝑆 ) |
3 |
|
saldifcl |
⊢ ( ( 𝑆 ∈ SAlg ∧ ∅ ∈ 𝑆 ) → ( ∪ 𝑆 ∖ ∅ ) ∈ 𝑆 ) |
4 |
2 3
|
mpdan |
⊢ ( 𝑆 ∈ SAlg → ( ∪ 𝑆 ∖ ∅ ) ∈ 𝑆 ) |
5 |
1 4
|
eqeltrrid |
⊢ ( 𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆 ) |