Metamath Proof Explorer
Description: SAlg sigma-algebra is closed under countable indexed intersection.
(Contributed by Glauco Siliprandi, 17-Aug-2020)
|
|
Ref |
Expression |
|
Hypotheses |
saliincl.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
|
|
saliincl.kct |
⊢ ( 𝜑 → 𝐾 ≼ ω ) |
|
|
saliincl.kn0 |
⊢ ( 𝜑 → 𝐾 ≠ ∅ ) |
|
|
saliincl.e |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → 𝐸 ∈ 𝑆 ) |
|
Assertion |
saliincl |
⊢ ( 𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
saliincl.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
2 |
|
saliincl.kct |
⊢ ( 𝜑 → 𝐾 ≼ ω ) |
3 |
|
saliincl.kn0 |
⊢ ( 𝜑 → 𝐾 ≠ ∅ ) |
4 |
|
saliincl.e |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → 𝐸 ∈ 𝑆 ) |
5 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
6 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑆 |
7 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐾 |
8 |
5 6 7 1 2 3 4
|
saliinclf |
⊢ ( 𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆 ) |