Step |
Hyp |
Ref |
Expression |
1 |
|
saliincl.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
2 |
|
saliincl.kct |
⊢ ( 𝜑 → 𝐾 ≼ ω ) |
3 |
|
saliincl.kn0 |
⊢ ( 𝜑 → 𝐾 ≠ ∅ ) |
4 |
|
saliincl.e |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → 𝐸 ∈ 𝑆 ) |
5 |
|
elssuni |
⊢ ( 𝐸 ∈ 𝑆 → 𝐸 ⊆ ∪ 𝑆 ) |
6 |
4 5
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → 𝐸 ⊆ ∪ 𝑆 ) |
7 |
|
df-ss |
⊢ ( 𝐸 ⊆ ∪ 𝑆 ↔ ( 𝐸 ∩ ∪ 𝑆 ) = 𝐸 ) |
8 |
6 7
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → ( 𝐸 ∩ ∪ 𝑆 ) = 𝐸 ) |
9 |
8
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → 𝐸 = ( 𝐸 ∩ ∪ 𝑆 ) ) |
10 |
|
incom |
⊢ ( 𝐸 ∩ ∪ 𝑆 ) = ( ∪ 𝑆 ∩ 𝐸 ) |
11 |
10
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → ( 𝐸 ∩ ∪ 𝑆 ) = ( ∪ 𝑆 ∩ 𝐸 ) ) |
12 |
|
dfin4 |
⊢ ( ∪ 𝑆 ∩ 𝐸 ) = ( ∪ 𝑆 ∖ ( ∪ 𝑆 ∖ 𝐸 ) ) |
13 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → ( ∪ 𝑆 ∩ 𝐸 ) = ( ∪ 𝑆 ∖ ( ∪ 𝑆 ∖ 𝐸 ) ) ) |
14 |
9 11 13
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → 𝐸 = ( ∪ 𝑆 ∖ ( ∪ 𝑆 ∖ 𝐸 ) ) ) |
15 |
14
|
iineq2dv |
⊢ ( 𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 = ∩ 𝑘 ∈ 𝐾 ( ∪ 𝑆 ∖ ( ∪ 𝑆 ∖ 𝐸 ) ) ) |
16 |
|
iindif2 |
⊢ ( 𝐾 ≠ ∅ → ∩ 𝑘 ∈ 𝐾 ( ∪ 𝑆 ∖ ( ∪ 𝑆 ∖ 𝐸 ) ) = ( ∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 ( ∪ 𝑆 ∖ 𝐸 ) ) ) |
17 |
3 16
|
syl |
⊢ ( 𝜑 → ∩ 𝑘 ∈ 𝐾 ( ∪ 𝑆 ∖ ( ∪ 𝑆 ∖ 𝐸 ) ) = ( ∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 ( ∪ 𝑆 ∖ 𝐸 ) ) ) |
18 |
15 17
|
eqtrd |
⊢ ( 𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 = ( ∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 ( ∪ 𝑆 ∖ 𝐸 ) ) ) |
19 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → 𝑆 ∈ SAlg ) |
20 |
|
saldifcl |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ) → ( ∪ 𝑆 ∖ 𝐸 ) ∈ 𝑆 ) |
21 |
19 4 20
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → ( ∪ 𝑆 ∖ 𝐸 ) ∈ 𝑆 ) |
22 |
1 2 21
|
saliuncl |
⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝐾 ( ∪ 𝑆 ∖ 𝐸 ) ∈ 𝑆 ) |
23 |
|
saldifcl |
⊢ ( ( 𝑆 ∈ SAlg ∧ ∪ 𝑘 ∈ 𝐾 ( ∪ 𝑆 ∖ 𝐸 ) ∈ 𝑆 ) → ( ∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 ( ∪ 𝑆 ∖ 𝐸 ) ) ∈ 𝑆 ) |
24 |
1 22 23
|
syl2anc |
⊢ ( 𝜑 → ( ∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 ( ∪ 𝑆 ∖ 𝐸 ) ) ∈ 𝑆 ) |
25 |
18 24
|
eqeltrd |
⊢ ( 𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆 ) |