Metamath Proof Explorer


Theorem saliincl

Description: SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses saliincl.s ( 𝜑𝑆 ∈ SAlg )
saliincl.kct ( 𝜑𝐾 ≼ ω )
saliincl.kn0 ( 𝜑𝐾 ≠ ∅ )
saliincl.e ( ( 𝜑𝑘𝐾 ) → 𝐸𝑆 )
Assertion saliincl ( 𝜑 𝑘𝐾 𝐸𝑆 )

Proof

Step Hyp Ref Expression
1 saliincl.s ( 𝜑𝑆 ∈ SAlg )
2 saliincl.kct ( 𝜑𝐾 ≼ ω )
3 saliincl.kn0 ( 𝜑𝐾 ≠ ∅ )
4 saliincl.e ( ( 𝜑𝑘𝐾 ) → 𝐸𝑆 )
5 nfv 𝑘 𝜑
6 nfcv 𝑘 𝑆
7 nfcv 𝑘 𝐾
8 5 6 7 1 2 3 4 saliinclf ( 𝜑 𝑘𝐾 𝐸𝑆 )