Metamath Proof Explorer


Theorem saliuncl

Description: SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses saliuncl.s ( 𝜑𝑆 ∈ SAlg )
saliuncl.kct ( 𝜑𝐾 ≼ ω )
saliuncl.b ( ( 𝜑𝑘𝐾 ) → 𝐸𝑆 )
Assertion saliuncl ( 𝜑 𝑘𝐾 𝐸𝑆 )

Proof

Step Hyp Ref Expression
1 saliuncl.s ( 𝜑𝑆 ∈ SAlg )
2 saliuncl.kct ( 𝜑𝐾 ≼ ω )
3 saliuncl.b ( ( 𝜑𝑘𝐾 ) → 𝐸𝑆 )
4 3 ralrimiva ( 𝜑 → ∀ 𝑘𝐾 𝐸𝑆 )
5 dfiun3g ( ∀ 𝑘𝐾 𝐸𝑆 𝑘𝐾 𝐸 = ran ( 𝑘𝐾𝐸 ) )
6 4 5 syl ( 𝜑 𝑘𝐾 𝐸 = ran ( 𝑘𝐾𝐸 ) )
7 eqid ( 𝑘𝐾𝐸 ) = ( 𝑘𝐾𝐸 )
8 7 rnmptss ( ∀ 𝑘𝐾 𝐸𝑆 → ran ( 𝑘𝐾𝐸 ) ⊆ 𝑆 )
9 4 8 syl ( 𝜑 → ran ( 𝑘𝐾𝐸 ) ⊆ 𝑆 )
10 1 9 ssexd ( 𝜑 → ran ( 𝑘𝐾𝐸 ) ∈ V )
11 elpwg ( ran ( 𝑘𝐾𝐸 ) ∈ V → ( ran ( 𝑘𝐾𝐸 ) ∈ 𝒫 𝑆 ↔ ran ( 𝑘𝐾𝐸 ) ⊆ 𝑆 ) )
12 10 11 syl ( 𝜑 → ( ran ( 𝑘𝐾𝐸 ) ∈ 𝒫 𝑆 ↔ ran ( 𝑘𝐾𝐸 ) ⊆ 𝑆 ) )
13 9 12 mpbird ( 𝜑 → ran ( 𝑘𝐾𝐸 ) ∈ 𝒫 𝑆 )
14 1stcrestlem ( 𝐾 ≼ ω → ran ( 𝑘𝐾𝐸 ) ≼ ω )
15 2 14 syl ( 𝜑 → ran ( 𝑘𝐾𝐸 ) ≼ ω )
16 1 13 15 salunicl ( 𝜑 ran ( 𝑘𝐾𝐸 ) ∈ 𝑆 )
17 6 16 eqeltrd ( 𝜑 𝑘𝐾 𝐸𝑆 )