Step |
Hyp |
Ref |
Expression |
1 |
|
saliuncl.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
2 |
|
saliuncl.kct |
⊢ ( 𝜑 → 𝐾 ≼ ω ) |
3 |
|
saliuncl.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → 𝐸 ∈ 𝑆 ) |
4 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆 ) |
5 |
|
dfiun3g |
⊢ ( ∀ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆 → ∪ 𝑘 ∈ 𝐾 𝐸 = ∪ ran ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 = ∪ ran ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) ) |
7 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) = ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) |
8 |
7
|
rnmptss |
⊢ ( ∀ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆 → ran ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) ⊆ 𝑆 ) |
9 |
4 8
|
syl |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) ⊆ 𝑆 ) |
10 |
1 9
|
ssexd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) ∈ V ) |
11 |
|
elpwg |
⊢ ( ran ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) ∈ V → ( ran ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) ∈ 𝒫 𝑆 ↔ ran ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) ⊆ 𝑆 ) ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → ( ran ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) ∈ 𝒫 𝑆 ↔ ran ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) ⊆ 𝑆 ) ) |
13 |
9 12
|
mpbird |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) ∈ 𝒫 𝑆 ) |
14 |
|
1stcrestlem |
⊢ ( 𝐾 ≼ ω → ran ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) ≼ ω ) |
15 |
2 14
|
syl |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) ≼ ω ) |
16 |
1 13 15
|
salunicl |
⊢ ( 𝜑 → ∪ ran ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) ∈ 𝑆 ) |
17 |
6 16
|
eqeltrd |
⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆 ) |