Metamath Proof Explorer


Theorem saliuncl

Description: SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses saliuncl.s φ S SAlg
saliuncl.kct φ K ω
saliuncl.b φ k K E S
Assertion saliuncl φ k K E S

Proof

Step Hyp Ref Expression
1 saliuncl.s φ S SAlg
2 saliuncl.kct φ K ω
3 saliuncl.b φ k K E S
4 3 ralrimiva φ k K E S
5 dfiun3g k K E S k K E = ran k K E
6 4 5 syl φ k K E = ran k K E
7 eqid k K E = k K E
8 7 rnmptss k K E S ran k K E S
9 4 8 syl φ ran k K E S
10 1 9 ssexd φ ran k K E V
11 elpwg ran k K E V ran k K E 𝒫 S ran k K E S
12 10 11 syl φ ran k K E 𝒫 S ran k K E S
13 9 12 mpbird φ ran k K E 𝒫 S
14 1stcrestlem K ω ran k K E ω
15 2 14 syl φ ran k K E ω
16 1 13 15 salunicl φ ran k K E S
17 6 16 eqeltrd φ k K E S