Metamath Proof Explorer


Theorem salincl

Description: The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion salincl SSAlgESFSEFS

Proof

Step Hyp Ref Expression
1 eqidd SSAlgESFSEF=EF
2 inss1 EFE
3 2 a1i SSAlgESEFE
4 elssuni ESES
5 4 adantl SSAlgESES
6 3 5 sstrd SSAlgESEFS
7 dfss4 EFSSSEF=EF
8 6 7 sylib SSAlgESSSEF=EF
9 8 eqcomd SSAlgESEF=SSEF
10 9 3adant3 SSAlgESFSEF=SSEF
11 difindi SEF=SESF
12 11 difeq2i SSEF=SSESF
13 12 a1i SSAlgESFSSSEF=SSESF
14 1 10 13 3eqtrd SSAlgESFSEF=SSESF
15 simp1 SSAlgESFSSSAlg
16 saldifcl SSAlgESSES
17 16 3adant3 SSAlgESFSSES
18 saldifcl SSAlgFSSFS
19 18 3adant2 SSAlgESFSSFS
20 saluncl SSAlgSESSFSSESFS
21 15 17 19 20 syl3anc SSAlgESFSSESFS
22 saldifcl SSAlgSESFSSSESFS
23 15 21 22 syl2anc SSAlgESFSSSESFS
24 14 23 eqeltrd SSAlgESFSEFS