Description: The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | saluncl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniprg | |
|
2 | 1 | eqcomd | |
3 | 2 | 3adant1 | |
4 | prfi | |
|
5 | isfinite | |
|
6 | 5 | biimpi | |
7 | sdomdom | |
|
8 | 6 7 | syl | |
9 | 4 8 | ax-mp | |
10 | 9 | a1i | |
11 | prelpwi | |
|
12 | 11 | 3adant1 | |
13 | issal | |
|
14 | 13 | ibi | |
15 | 14 | simp3d | |
16 | 15 | 3ad2ant1 | |
17 | breq1 | |
|
18 | unieq | |
|
19 | 18 | eleq1d | |
20 | 17 19 | imbi12d | |
21 | 20 | rspcva | |
22 | 12 16 21 | syl2anc | |
23 | 10 22 | mpd | |
24 | 3 23 | eqeltrd | |