Metamath Proof Explorer


Theorem saluncl

Description: The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion saluncl SSAlgESFSEFS

Proof

Step Hyp Ref Expression
1 uniprg ESFSEF=EF
2 1 eqcomd ESFSEF=EF
3 2 3adant1 SSAlgESFSEF=EF
4 prfi EFFin
5 isfinite EFFinEFω
6 5 biimpi EFFinEFω
7 sdomdom EFωEFω
8 6 7 syl EFFinEFω
9 4 8 ax-mp EFω
10 9 a1i SSAlgESFSEFω
11 prelpwi ESFSEF𝒫S
12 11 3adant1 SSAlgESFSEF𝒫S
13 issal SSAlgSSAlgSySSySy𝒫SyωyS
14 13 ibi SSAlgSySSySy𝒫SyωyS
15 14 simp3d SSAlgy𝒫SyωyS
16 15 3ad2ant1 SSAlgESFSy𝒫SyωyS
17 breq1 y=EFyωEFω
18 unieq y=EFy=EF
19 18 eleq1d y=EFySEFS
20 17 19 imbi12d y=EFyωySEFωEFS
21 20 rspcva EF𝒫Sy𝒫SyωySEFωEFS
22 12 16 21 syl2anc SSAlgESFSEFωEFS
23 10 22 mpd SSAlgESFSEFS
24 3 23 eqeltrd SSAlgESFSEFS