Metamath Proof Explorer


Theorem saluncl

Description: The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion saluncl S SAlg E S F S E F S

Proof

Step Hyp Ref Expression
1 uniprg E S F S E F = E F
2 1 eqcomd E S F S E F = E F
3 2 3adant1 S SAlg E S F S E F = E F
4 prfi E F Fin
5 isfinite E F Fin E F ω
6 5 biimpi E F Fin E F ω
7 sdomdom E F ω E F ω
8 6 7 syl E F Fin E F ω
9 4 8 ax-mp E F ω
10 9 a1i S SAlg E S F S E F ω
11 prelpwi E S F S E F 𝒫 S
12 11 3adant1 S SAlg E S F S E F 𝒫 S
13 issal S SAlg S SAlg S y S S y S y 𝒫 S y ω y S
14 13 ibi S SAlg S y S S y S y 𝒫 S y ω y S
15 14 simp3d S SAlg y 𝒫 S y ω y S
16 15 3ad2ant1 S SAlg E S F S y 𝒫 S y ω y S
17 breq1 y = E F y ω E F ω
18 unieq y = E F y = E F
19 18 eleq1d y = E F y S E F S
20 17 19 imbi12d y = E F y ω y S E F ω E F S
21 20 rspcva E F 𝒫 S y 𝒫 S y ω y S E F ω E F S
22 12 16 21 syl2anc S SAlg E S F S E F ω E F S
23 10 22 mpd S SAlg E S F S E F S
24 3 23 eqeltrd S SAlg E S F S E F S