| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uniprg |
⊢ ( ( 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ∪ { 𝐸 , 𝐹 } = ( 𝐸 ∪ 𝐹 ) ) |
| 2 |
1
|
eqcomd |
⊢ ( ( 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( 𝐸 ∪ 𝐹 ) = ∪ { 𝐸 , 𝐹 } ) |
| 3 |
2
|
3adant1 |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( 𝐸 ∪ 𝐹 ) = ∪ { 𝐸 , 𝐹 } ) |
| 4 |
|
prfi |
⊢ { 𝐸 , 𝐹 } ∈ Fin |
| 5 |
|
isfinite |
⊢ ( { 𝐸 , 𝐹 } ∈ Fin ↔ { 𝐸 , 𝐹 } ≺ ω ) |
| 6 |
5
|
biimpi |
⊢ ( { 𝐸 , 𝐹 } ∈ Fin → { 𝐸 , 𝐹 } ≺ ω ) |
| 7 |
|
sdomdom |
⊢ ( { 𝐸 , 𝐹 } ≺ ω → { 𝐸 , 𝐹 } ≼ ω ) |
| 8 |
6 7
|
syl |
⊢ ( { 𝐸 , 𝐹 } ∈ Fin → { 𝐸 , 𝐹 } ≼ ω ) |
| 9 |
4 8
|
ax-mp |
⊢ { 𝐸 , 𝐹 } ≼ ω |
| 10 |
9
|
a1i |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → { 𝐸 , 𝐹 } ≼ ω ) |
| 11 |
|
prelpwi |
⊢ ( ( 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → { 𝐸 , 𝐹 } ∈ 𝒫 𝑆 ) |
| 12 |
11
|
3adant1 |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → { 𝐸 , 𝐹 } ∈ 𝒫 𝑆 ) |
| 13 |
|
issal |
⊢ ( 𝑆 ∈ SAlg → ( 𝑆 ∈ SAlg ↔ ( ∅ ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆 ) ) ) ) |
| 14 |
13
|
ibi |
⊢ ( 𝑆 ∈ SAlg → ( ∅ ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆 ) ) ) |
| 15 |
14
|
simp3d |
⊢ ( 𝑆 ∈ SAlg → ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆 ) ) |
| 16 |
15
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆 ) ) |
| 17 |
|
breq1 |
⊢ ( 𝑦 = { 𝐸 , 𝐹 } → ( 𝑦 ≼ ω ↔ { 𝐸 , 𝐹 } ≼ ω ) ) |
| 18 |
|
unieq |
⊢ ( 𝑦 = { 𝐸 , 𝐹 } → ∪ 𝑦 = ∪ { 𝐸 , 𝐹 } ) |
| 19 |
18
|
eleq1d |
⊢ ( 𝑦 = { 𝐸 , 𝐹 } → ( ∪ 𝑦 ∈ 𝑆 ↔ ∪ { 𝐸 , 𝐹 } ∈ 𝑆 ) ) |
| 20 |
17 19
|
imbi12d |
⊢ ( 𝑦 = { 𝐸 , 𝐹 } → ( ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆 ) ↔ ( { 𝐸 , 𝐹 } ≼ ω → ∪ { 𝐸 , 𝐹 } ∈ 𝑆 ) ) ) |
| 21 |
20
|
rspcva |
⊢ ( ( { 𝐸 , 𝐹 } ∈ 𝒫 𝑆 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆 ) ) → ( { 𝐸 , 𝐹 } ≼ ω → ∪ { 𝐸 , 𝐹 } ∈ 𝑆 ) ) |
| 22 |
12 16 21
|
syl2anc |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( { 𝐸 , 𝐹 } ≼ ω → ∪ { 𝐸 , 𝐹 } ∈ 𝑆 ) ) |
| 23 |
10 22
|
mpd |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ∪ { 𝐸 , 𝐹 } ∈ 𝑆 ) |
| 24 |
3 23
|
eqeltrd |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( 𝐸 ∪ 𝐹 ) ∈ 𝑆 ) |