Metamath Proof Explorer


Theorem saluncl

Description: The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion saluncl ( ( 𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆 ) → ( 𝐸𝐹 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 uniprg ( ( 𝐸𝑆𝐹𝑆 ) → { 𝐸 , 𝐹 } = ( 𝐸𝐹 ) )
2 1 eqcomd ( ( 𝐸𝑆𝐹𝑆 ) → ( 𝐸𝐹 ) = { 𝐸 , 𝐹 } )
3 2 3adant1 ( ( 𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆 ) → ( 𝐸𝐹 ) = { 𝐸 , 𝐹 } )
4 prfi { 𝐸 , 𝐹 } ∈ Fin
5 isfinite ( { 𝐸 , 𝐹 } ∈ Fin ↔ { 𝐸 , 𝐹 } ≺ ω )
6 5 biimpi ( { 𝐸 , 𝐹 } ∈ Fin → { 𝐸 , 𝐹 } ≺ ω )
7 sdomdom ( { 𝐸 , 𝐹 } ≺ ω → { 𝐸 , 𝐹 } ≼ ω )
8 6 7 syl ( { 𝐸 , 𝐹 } ∈ Fin → { 𝐸 , 𝐹 } ≼ ω )
9 4 8 ax-mp { 𝐸 , 𝐹 } ≼ ω
10 9 a1i ( ( 𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆 ) → { 𝐸 , 𝐹 } ≼ ω )
11 prelpwi ( ( 𝐸𝑆𝐹𝑆 ) → { 𝐸 , 𝐹 } ∈ 𝒫 𝑆 )
12 11 3adant1 ( ( 𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆 ) → { 𝐸 , 𝐹 } ∈ 𝒫 𝑆 )
13 issal ( 𝑆 ∈ SAlg → ( 𝑆 ∈ SAlg ↔ ( ∅ ∈ 𝑆 ∧ ∀ 𝑦𝑆 ( 𝑆𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → 𝑦𝑆 ) ) ) )
14 13 ibi ( 𝑆 ∈ SAlg → ( ∅ ∈ 𝑆 ∧ ∀ 𝑦𝑆 ( 𝑆𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → 𝑦𝑆 ) ) )
15 14 simp3d ( 𝑆 ∈ SAlg → ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → 𝑦𝑆 ) )
16 15 3ad2ant1 ( ( 𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆 ) → ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → 𝑦𝑆 ) )
17 breq1 ( 𝑦 = { 𝐸 , 𝐹 } → ( 𝑦 ≼ ω ↔ { 𝐸 , 𝐹 } ≼ ω ) )
18 unieq ( 𝑦 = { 𝐸 , 𝐹 } → 𝑦 = { 𝐸 , 𝐹 } )
19 18 eleq1d ( 𝑦 = { 𝐸 , 𝐹 } → ( 𝑦𝑆 { 𝐸 , 𝐹 } ∈ 𝑆 ) )
20 17 19 imbi12d ( 𝑦 = { 𝐸 , 𝐹 } → ( ( 𝑦 ≼ ω → 𝑦𝑆 ) ↔ ( { 𝐸 , 𝐹 } ≼ ω → { 𝐸 , 𝐹 } ∈ 𝑆 ) ) )
21 20 rspcva ( ( { 𝐸 , 𝐹 } ∈ 𝒫 𝑆 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → 𝑦𝑆 ) ) → ( { 𝐸 , 𝐹 } ≼ ω → { 𝐸 , 𝐹 } ∈ 𝑆 ) )
22 12 16 21 syl2anc ( ( 𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆 ) → ( { 𝐸 , 𝐹 } ≼ ω → { 𝐸 , 𝐹 } ∈ 𝑆 ) )
23 10 22 mpd ( ( 𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆 ) → { 𝐸 , 𝐹 } ∈ 𝑆 )
24 3 23 eqeltrd ( ( 𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆 ) → ( 𝐸𝐹 ) ∈ 𝑆 )