Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
⊢ ∅ ∈ V |
2 |
1
|
prid1 |
⊢ ∅ ∈ { ∅ , 𝑋 } |
3 |
2
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → ∅ ∈ { ∅ , 𝑋 } ) |
4 |
|
uniprg |
⊢ ( ( ∅ ∈ V ∧ 𝑋 ∈ 𝑉 ) → ∪ { ∅ , 𝑋 } = ( ∅ ∪ 𝑋 ) ) |
5 |
1 4
|
mpan |
⊢ ( 𝑋 ∈ 𝑉 → ∪ { ∅ , 𝑋 } = ( ∅ ∪ 𝑋 ) ) |
6 |
|
0un |
⊢ ( ∅ ∪ 𝑋 ) = 𝑋 |
7 |
5 6
|
eqtrdi |
⊢ ( 𝑋 ∈ 𝑉 → ∪ { ∅ , 𝑋 } = 𝑋 ) |
8 |
7
|
difeq1d |
⊢ ( 𝑋 ∈ 𝑉 → ( ∪ { ∅ , 𝑋 } ∖ 𝑦 ) = ( 𝑋 ∖ 𝑦 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ { ∅ , 𝑋 } ) → ( ∪ { ∅ , 𝑋 } ∖ 𝑦 ) = ( 𝑋 ∖ 𝑦 ) ) |
10 |
|
difeq2 |
⊢ ( 𝑦 = ∅ → ( 𝑋 ∖ 𝑦 ) = ( 𝑋 ∖ ∅ ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 = ∅ ) → ( 𝑋 ∖ 𝑦 ) = ( 𝑋 ∖ ∅ ) ) |
12 |
|
dif0 |
⊢ ( 𝑋 ∖ ∅ ) = 𝑋 |
13 |
11 12
|
eqtrdi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 = ∅ ) → ( 𝑋 ∖ 𝑦 ) = 𝑋 ) |
14 |
|
prid2g |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ { ∅ , 𝑋 } ) |
15 |
14
|
adantr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 = ∅ ) → 𝑋 ∈ { ∅ , 𝑋 } ) |
16 |
13 15
|
eqeltrd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 = ∅ ) → ( 𝑋 ∖ 𝑦 ) ∈ { ∅ , 𝑋 } ) |
17 |
16
|
adantlr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ { ∅ , 𝑋 } ) ∧ 𝑦 = ∅ ) → ( 𝑋 ∖ 𝑦 ) ∈ { ∅ , 𝑋 } ) |
18 |
|
neqne |
⊢ ( ¬ 𝑦 = ∅ → 𝑦 ≠ ∅ ) |
19 |
|
elprn1 |
⊢ ( ( 𝑦 ∈ { ∅ , 𝑋 } ∧ 𝑦 ≠ ∅ ) → 𝑦 = 𝑋 ) |
20 |
18 19
|
sylan2 |
⊢ ( ( 𝑦 ∈ { ∅ , 𝑋 } ∧ ¬ 𝑦 = ∅ ) → 𝑦 = 𝑋 ) |
21 |
20
|
adantll |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ { ∅ , 𝑋 } ) ∧ ¬ 𝑦 = ∅ ) → 𝑦 = 𝑋 ) |
22 |
|
difeq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝑋 ∖ 𝑦 ) = ( 𝑋 ∖ 𝑋 ) ) |
23 |
|
difid |
⊢ ( 𝑋 ∖ 𝑋 ) = ∅ |
24 |
22 23
|
eqtrdi |
⊢ ( 𝑦 = 𝑋 → ( 𝑋 ∖ 𝑦 ) = ∅ ) |
25 |
2
|
a1i |
⊢ ( 𝑦 = 𝑋 → ∅ ∈ { ∅ , 𝑋 } ) |
26 |
24 25
|
eqeltrd |
⊢ ( 𝑦 = 𝑋 → ( 𝑋 ∖ 𝑦 ) ∈ { ∅ , 𝑋 } ) |
27 |
21 26
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ { ∅ , 𝑋 } ) ∧ ¬ 𝑦 = ∅ ) → ( 𝑋 ∖ 𝑦 ) ∈ { ∅ , 𝑋 } ) |
28 |
17 27
|
pm2.61dan |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ { ∅ , 𝑋 } ) → ( 𝑋 ∖ 𝑦 ) ∈ { ∅ , 𝑋 } ) |
29 |
9 28
|
eqeltrd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ { ∅ , 𝑋 } ) → ( ∪ { ∅ , 𝑋 } ∖ 𝑦 ) ∈ { ∅ , 𝑋 } ) |
30 |
29
|
ralrimiva |
⊢ ( 𝑋 ∈ 𝑉 → ∀ 𝑦 ∈ { ∅ , 𝑋 } ( ∪ { ∅ , 𝑋 } ∖ 𝑦 ) ∈ { ∅ , 𝑋 } ) |
31 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 { ∅ , 𝑋 } → 𝑦 ⊆ { ∅ , 𝑋 } ) |
32 |
31
|
unissd |
⊢ ( 𝑦 ∈ 𝒫 { ∅ , 𝑋 } → ∪ 𝑦 ⊆ ∪ { ∅ , 𝑋 } ) |
33 |
32
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) → ∪ 𝑦 ⊆ ∪ { ∅ , 𝑋 } ) |
34 |
7
|
adantr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) → ∪ { ∅ , 𝑋 } = 𝑋 ) |
35 |
33 34
|
sseqtrd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) → ∪ 𝑦 ⊆ 𝑋 ) |
36 |
35
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) ∧ 𝑋 ∈ 𝑦 ) → ∪ 𝑦 ⊆ 𝑋 ) |
37 |
|
elssuni |
⊢ ( 𝑋 ∈ 𝑦 → 𝑋 ⊆ ∪ 𝑦 ) |
38 |
37
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) ∧ 𝑋 ∈ 𝑦 ) → 𝑋 ⊆ ∪ 𝑦 ) |
39 |
36 38
|
eqssd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) ∧ 𝑋 ∈ 𝑦 ) → ∪ 𝑦 = 𝑋 ) |
40 |
14
|
ad2antrr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) ∧ 𝑋 ∈ 𝑦 ) → 𝑋 ∈ { ∅ , 𝑋 } ) |
41 |
39 40
|
eqeltrd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) ∧ 𝑋 ∈ 𝑦 ) → ∪ 𝑦 ∈ { ∅ , 𝑋 } ) |
42 |
|
id |
⊢ ( 𝑦 ∈ 𝒫 { ∅ , 𝑋 } → 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) |
43 |
|
pwpr |
⊢ 𝒫 { ∅ , 𝑋 } = ( { ∅ , { ∅ } } ∪ { { 𝑋 } , { ∅ , 𝑋 } } ) |
44 |
42 43
|
eleqtrdi |
⊢ ( 𝑦 ∈ 𝒫 { ∅ , 𝑋 } → 𝑦 ∈ ( { ∅ , { ∅ } } ∪ { { 𝑋 } , { ∅ , 𝑋 } } ) ) |
45 |
44
|
adantr |
⊢ ( ( 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ∧ ¬ 𝑋 ∈ 𝑦 ) → 𝑦 ∈ ( { ∅ , { ∅ } } ∪ { { 𝑋 } , { ∅ , 𝑋 } } ) ) |
46 |
45
|
adantll |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) ∧ ¬ 𝑋 ∈ 𝑦 ) → 𝑦 ∈ ( { ∅ , { ∅ } } ∪ { { 𝑋 } , { ∅ , 𝑋 } } ) ) |
47 |
|
snidg |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ { 𝑋 } ) |
48 |
47
|
adantr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 = { 𝑋 } ) → 𝑋 ∈ { 𝑋 } ) |
49 |
|
id |
⊢ ( 𝑦 = { 𝑋 } → 𝑦 = { 𝑋 } ) |
50 |
49
|
eqcomd |
⊢ ( 𝑦 = { 𝑋 } → { 𝑋 } = 𝑦 ) |
51 |
50
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 = { 𝑋 } ) → { 𝑋 } = 𝑦 ) |
52 |
48 51
|
eleqtrd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 = { 𝑋 } ) → 𝑋 ∈ 𝑦 ) |
53 |
52
|
adantlr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ { { 𝑋 } , { ∅ , 𝑋 } } ) ∧ 𝑦 = { 𝑋 } ) → 𝑋 ∈ 𝑦 ) |
54 |
|
id |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ 𝑉 ) |
55 |
54
|
ad2antrr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ { { 𝑋 } , { ∅ , 𝑋 } } ) ∧ ¬ 𝑦 = { 𝑋 } ) → 𝑋 ∈ 𝑉 ) |
56 |
|
neqne |
⊢ ( ¬ 𝑦 = { 𝑋 } → 𝑦 ≠ { 𝑋 } ) |
57 |
|
elprn1 |
⊢ ( ( 𝑦 ∈ { { 𝑋 } , { ∅ , 𝑋 } } ∧ 𝑦 ≠ { 𝑋 } ) → 𝑦 = { ∅ , 𝑋 } ) |
58 |
56 57
|
sylan2 |
⊢ ( ( 𝑦 ∈ { { 𝑋 } , { ∅ , 𝑋 } } ∧ ¬ 𝑦 = { 𝑋 } ) → 𝑦 = { ∅ , 𝑋 } ) |
59 |
58
|
adantll |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ { { 𝑋 } , { ∅ , 𝑋 } } ) ∧ ¬ 𝑦 = { 𝑋 } ) → 𝑦 = { ∅ , 𝑋 } ) |
60 |
14
|
adantr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 = { ∅ , 𝑋 } ) → 𝑋 ∈ { ∅ , 𝑋 } ) |
61 |
|
id |
⊢ ( 𝑦 = { ∅ , 𝑋 } → 𝑦 = { ∅ , 𝑋 } ) |
62 |
61
|
eqcomd |
⊢ ( 𝑦 = { ∅ , 𝑋 } → { ∅ , 𝑋 } = 𝑦 ) |
63 |
62
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 = { ∅ , 𝑋 } ) → { ∅ , 𝑋 } = 𝑦 ) |
64 |
60 63
|
eleqtrd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 = { ∅ , 𝑋 } ) → 𝑋 ∈ 𝑦 ) |
65 |
55 59 64
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ { { 𝑋 } , { ∅ , 𝑋 } } ) ∧ ¬ 𝑦 = { 𝑋 } ) → 𝑋 ∈ 𝑦 ) |
66 |
53 65
|
pm2.61dan |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ { { 𝑋 } , { ∅ , 𝑋 } } ) → 𝑋 ∈ 𝑦 ) |
67 |
66
|
stoic1a |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑦 ) → ¬ 𝑦 ∈ { { 𝑋 } , { ∅ , 𝑋 } } ) |
68 |
67
|
adantlr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) ∧ ¬ 𝑋 ∈ 𝑦 ) → ¬ 𝑦 ∈ { { 𝑋 } , { ∅ , 𝑋 } } ) |
69 |
|
elunnel2 |
⊢ ( ( 𝑦 ∈ ( { ∅ , { ∅ } } ∪ { { 𝑋 } , { ∅ , 𝑋 } } ) ∧ ¬ 𝑦 ∈ { { 𝑋 } , { ∅ , 𝑋 } } ) → 𝑦 ∈ { ∅ , { ∅ } } ) |
70 |
46 68 69
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) ∧ ¬ 𝑋 ∈ 𝑦 ) → 𝑦 ∈ { ∅ , { ∅ } } ) |
71 |
|
unieq |
⊢ ( 𝑦 = ∅ → ∪ 𝑦 = ∪ ∅ ) |
72 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
73 |
71 72
|
eqtrdi |
⊢ ( 𝑦 = ∅ → ∪ 𝑦 = ∅ ) |
74 |
73
|
adantl |
⊢ ( ( 𝑦 ∈ { ∅ , { ∅ } } ∧ 𝑦 = ∅ ) → ∪ 𝑦 = ∅ ) |
75 |
|
elprn1 |
⊢ ( ( 𝑦 ∈ { ∅ , { ∅ } } ∧ 𝑦 ≠ ∅ ) → 𝑦 = { ∅ } ) |
76 |
18 75
|
sylan2 |
⊢ ( ( 𝑦 ∈ { ∅ , { ∅ } } ∧ ¬ 𝑦 = ∅ ) → 𝑦 = { ∅ } ) |
77 |
|
unieq |
⊢ ( 𝑦 = { ∅ } → ∪ 𝑦 = ∪ { ∅ } ) |
78 |
|
unisn0 |
⊢ ∪ { ∅ } = ∅ |
79 |
77 78
|
eqtrdi |
⊢ ( 𝑦 = { ∅ } → ∪ 𝑦 = ∅ ) |
80 |
76 79
|
syl |
⊢ ( ( 𝑦 ∈ { ∅ , { ∅ } } ∧ ¬ 𝑦 = ∅ ) → ∪ 𝑦 = ∅ ) |
81 |
74 80
|
pm2.61dan |
⊢ ( 𝑦 ∈ { ∅ , { ∅ } } → ∪ 𝑦 = ∅ ) |
82 |
70 81
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) ∧ ¬ 𝑋 ∈ 𝑦 ) → ∪ 𝑦 = ∅ ) |
83 |
2
|
a1i |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) ∧ ¬ 𝑋 ∈ 𝑦 ) → ∅ ∈ { ∅ , 𝑋 } ) |
84 |
82 83
|
eqeltrd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) ∧ ¬ 𝑋 ∈ 𝑦 ) → ∪ 𝑦 ∈ { ∅ , 𝑋 } ) |
85 |
41 84
|
pm2.61dan |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) → ∪ 𝑦 ∈ { ∅ , 𝑋 } ) |
86 |
85
|
a1d |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) → ( 𝑦 ≼ ω → ∪ 𝑦 ∈ { ∅ , 𝑋 } ) ) |
87 |
86
|
ralrimiva |
⊢ ( 𝑋 ∈ 𝑉 → ∀ 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ( 𝑦 ≼ ω → ∪ 𝑦 ∈ { ∅ , 𝑋 } ) ) |
88 |
|
prex |
⊢ { ∅ , 𝑋 } ∈ V |
89 |
|
issal |
⊢ ( { ∅ , 𝑋 } ∈ V → ( { ∅ , 𝑋 } ∈ SAlg ↔ ( ∅ ∈ { ∅ , 𝑋 } ∧ ∀ 𝑦 ∈ { ∅ , 𝑋 } ( ∪ { ∅ , 𝑋 } ∖ 𝑦 ) ∈ { ∅ , 𝑋 } ∧ ∀ 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ( 𝑦 ≼ ω → ∪ 𝑦 ∈ { ∅ , 𝑋 } ) ) ) ) |
90 |
88 89
|
mp1i |
⊢ ( 𝑋 ∈ 𝑉 → ( { ∅ , 𝑋 } ∈ SAlg ↔ ( ∅ ∈ { ∅ , 𝑋 } ∧ ∀ 𝑦 ∈ { ∅ , 𝑋 } ( ∪ { ∅ , 𝑋 } ∖ 𝑦 ) ∈ { ∅ , 𝑋 } ∧ ∀ 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ( 𝑦 ≼ ω → ∪ 𝑦 ∈ { ∅ , 𝑋 } ) ) ) ) |
91 |
3 30 87 90
|
mpbir3and |
⊢ ( 𝑋 ∈ 𝑉 → { ∅ , 𝑋 } ∈ SAlg ) |