Metamath Proof Explorer


Theorem prsal

Description: The pair of the empty set and the whole base is a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion prsal ( 𝑋𝑉 → { ∅ , 𝑋 } ∈ SAlg )

Proof

Step Hyp Ref Expression
1 0ex ∅ ∈ V
2 1 prid1 ∅ ∈ { ∅ , 𝑋 }
3 2 a1i ( 𝑋𝑉 → ∅ ∈ { ∅ , 𝑋 } )
4 uniprg ( ( ∅ ∈ V ∧ 𝑋𝑉 ) → { ∅ , 𝑋 } = ( ∅ ∪ 𝑋 ) )
5 1 4 mpan ( 𝑋𝑉 { ∅ , 𝑋 } = ( ∅ ∪ 𝑋 ) )
6 0un ( ∅ ∪ 𝑋 ) = 𝑋
7 5 6 eqtrdi ( 𝑋𝑉 { ∅ , 𝑋 } = 𝑋 )
8 7 difeq1d ( 𝑋𝑉 → ( { ∅ , 𝑋 } ∖ 𝑦 ) = ( 𝑋𝑦 ) )
9 8 adantr ( ( 𝑋𝑉𝑦 ∈ { ∅ , 𝑋 } ) → ( { ∅ , 𝑋 } ∖ 𝑦 ) = ( 𝑋𝑦 ) )
10 difeq2 ( 𝑦 = ∅ → ( 𝑋𝑦 ) = ( 𝑋 ∖ ∅ ) )
11 10 adantl ( ( 𝑋𝑉𝑦 = ∅ ) → ( 𝑋𝑦 ) = ( 𝑋 ∖ ∅ ) )
12 dif0 ( 𝑋 ∖ ∅ ) = 𝑋
13 11 12 eqtrdi ( ( 𝑋𝑉𝑦 = ∅ ) → ( 𝑋𝑦 ) = 𝑋 )
14 prid2g ( 𝑋𝑉𝑋 ∈ { ∅ , 𝑋 } )
15 14 adantr ( ( 𝑋𝑉𝑦 = ∅ ) → 𝑋 ∈ { ∅ , 𝑋 } )
16 13 15 eqeltrd ( ( 𝑋𝑉𝑦 = ∅ ) → ( 𝑋𝑦 ) ∈ { ∅ , 𝑋 } )
17 16 adantlr ( ( ( 𝑋𝑉𝑦 ∈ { ∅ , 𝑋 } ) ∧ 𝑦 = ∅ ) → ( 𝑋𝑦 ) ∈ { ∅ , 𝑋 } )
18 neqne ( ¬ 𝑦 = ∅ → 𝑦 ≠ ∅ )
19 elprn1 ( ( 𝑦 ∈ { ∅ , 𝑋 } ∧ 𝑦 ≠ ∅ ) → 𝑦 = 𝑋 )
20 18 19 sylan2 ( ( 𝑦 ∈ { ∅ , 𝑋 } ∧ ¬ 𝑦 = ∅ ) → 𝑦 = 𝑋 )
21 20 adantll ( ( ( 𝑋𝑉𝑦 ∈ { ∅ , 𝑋 } ) ∧ ¬ 𝑦 = ∅ ) → 𝑦 = 𝑋 )
22 difeq2 ( 𝑦 = 𝑋 → ( 𝑋𝑦 ) = ( 𝑋𝑋 ) )
23 difid ( 𝑋𝑋 ) = ∅
24 22 23 eqtrdi ( 𝑦 = 𝑋 → ( 𝑋𝑦 ) = ∅ )
25 2 a1i ( 𝑦 = 𝑋 → ∅ ∈ { ∅ , 𝑋 } )
26 24 25 eqeltrd ( 𝑦 = 𝑋 → ( 𝑋𝑦 ) ∈ { ∅ , 𝑋 } )
27 21 26 syl ( ( ( 𝑋𝑉𝑦 ∈ { ∅ , 𝑋 } ) ∧ ¬ 𝑦 = ∅ ) → ( 𝑋𝑦 ) ∈ { ∅ , 𝑋 } )
28 17 27 pm2.61dan ( ( 𝑋𝑉𝑦 ∈ { ∅ , 𝑋 } ) → ( 𝑋𝑦 ) ∈ { ∅ , 𝑋 } )
29 9 28 eqeltrd ( ( 𝑋𝑉𝑦 ∈ { ∅ , 𝑋 } ) → ( { ∅ , 𝑋 } ∖ 𝑦 ) ∈ { ∅ , 𝑋 } )
30 29 ralrimiva ( 𝑋𝑉 → ∀ 𝑦 ∈ { ∅ , 𝑋 } ( { ∅ , 𝑋 } ∖ 𝑦 ) ∈ { ∅ , 𝑋 } )
31 elpwi ( 𝑦 ∈ 𝒫 { ∅ , 𝑋 } → 𝑦 ⊆ { ∅ , 𝑋 } )
32 31 unissd ( 𝑦 ∈ 𝒫 { ∅ , 𝑋 } → 𝑦 { ∅ , 𝑋 } )
33 32 adantl ( ( 𝑋𝑉𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) → 𝑦 { ∅ , 𝑋 } )
34 7 adantr ( ( 𝑋𝑉𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) → { ∅ , 𝑋 } = 𝑋 )
35 33 34 sseqtrd ( ( 𝑋𝑉𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) → 𝑦𝑋 )
36 35 adantr ( ( ( 𝑋𝑉𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) ∧ 𝑋𝑦 ) → 𝑦𝑋 )
37 elssuni ( 𝑋𝑦𝑋 𝑦 )
38 37 adantl ( ( ( 𝑋𝑉𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) ∧ 𝑋𝑦 ) → 𝑋 𝑦 )
39 36 38 eqssd ( ( ( 𝑋𝑉𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) ∧ 𝑋𝑦 ) → 𝑦 = 𝑋 )
40 14 ad2antrr ( ( ( 𝑋𝑉𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) ∧ 𝑋𝑦 ) → 𝑋 ∈ { ∅ , 𝑋 } )
41 39 40 eqeltrd ( ( ( 𝑋𝑉𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) ∧ 𝑋𝑦 ) → 𝑦 ∈ { ∅ , 𝑋 } )
42 id ( 𝑦 ∈ 𝒫 { ∅ , 𝑋 } → 𝑦 ∈ 𝒫 { ∅ , 𝑋 } )
43 pwpr 𝒫 { ∅ , 𝑋 } = ( { ∅ , { ∅ } } ∪ { { 𝑋 } , { ∅ , 𝑋 } } )
44 42 43 eleqtrdi ( 𝑦 ∈ 𝒫 { ∅ , 𝑋 } → 𝑦 ∈ ( { ∅ , { ∅ } } ∪ { { 𝑋 } , { ∅ , 𝑋 } } ) )
45 44 adantr ( ( 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ∧ ¬ 𝑋𝑦 ) → 𝑦 ∈ ( { ∅ , { ∅ } } ∪ { { 𝑋 } , { ∅ , 𝑋 } } ) )
46 45 adantll ( ( ( 𝑋𝑉𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) ∧ ¬ 𝑋𝑦 ) → 𝑦 ∈ ( { ∅ , { ∅ } } ∪ { { 𝑋 } , { ∅ , 𝑋 } } ) )
47 snidg ( 𝑋𝑉𝑋 ∈ { 𝑋 } )
48 47 adantr ( ( 𝑋𝑉𝑦 = { 𝑋 } ) → 𝑋 ∈ { 𝑋 } )
49 id ( 𝑦 = { 𝑋 } → 𝑦 = { 𝑋 } )
50 49 eqcomd ( 𝑦 = { 𝑋 } → { 𝑋 } = 𝑦 )
51 50 adantl ( ( 𝑋𝑉𝑦 = { 𝑋 } ) → { 𝑋 } = 𝑦 )
52 48 51 eleqtrd ( ( 𝑋𝑉𝑦 = { 𝑋 } ) → 𝑋𝑦 )
53 52 adantlr ( ( ( 𝑋𝑉𝑦 ∈ { { 𝑋 } , { ∅ , 𝑋 } } ) ∧ 𝑦 = { 𝑋 } ) → 𝑋𝑦 )
54 id ( 𝑋𝑉𝑋𝑉 )
55 54 ad2antrr ( ( ( 𝑋𝑉𝑦 ∈ { { 𝑋 } , { ∅ , 𝑋 } } ) ∧ ¬ 𝑦 = { 𝑋 } ) → 𝑋𝑉 )
56 neqne ( ¬ 𝑦 = { 𝑋 } → 𝑦 ≠ { 𝑋 } )
57 elprn1 ( ( 𝑦 ∈ { { 𝑋 } , { ∅ , 𝑋 } } ∧ 𝑦 ≠ { 𝑋 } ) → 𝑦 = { ∅ , 𝑋 } )
58 56 57 sylan2 ( ( 𝑦 ∈ { { 𝑋 } , { ∅ , 𝑋 } } ∧ ¬ 𝑦 = { 𝑋 } ) → 𝑦 = { ∅ , 𝑋 } )
59 58 adantll ( ( ( 𝑋𝑉𝑦 ∈ { { 𝑋 } , { ∅ , 𝑋 } } ) ∧ ¬ 𝑦 = { 𝑋 } ) → 𝑦 = { ∅ , 𝑋 } )
60 14 adantr ( ( 𝑋𝑉𝑦 = { ∅ , 𝑋 } ) → 𝑋 ∈ { ∅ , 𝑋 } )
61 id ( 𝑦 = { ∅ , 𝑋 } → 𝑦 = { ∅ , 𝑋 } )
62 61 eqcomd ( 𝑦 = { ∅ , 𝑋 } → { ∅ , 𝑋 } = 𝑦 )
63 62 adantl ( ( 𝑋𝑉𝑦 = { ∅ , 𝑋 } ) → { ∅ , 𝑋 } = 𝑦 )
64 60 63 eleqtrd ( ( 𝑋𝑉𝑦 = { ∅ , 𝑋 } ) → 𝑋𝑦 )
65 55 59 64 syl2anc ( ( ( 𝑋𝑉𝑦 ∈ { { 𝑋 } , { ∅ , 𝑋 } } ) ∧ ¬ 𝑦 = { 𝑋 } ) → 𝑋𝑦 )
66 53 65 pm2.61dan ( ( 𝑋𝑉𝑦 ∈ { { 𝑋 } , { ∅ , 𝑋 } } ) → 𝑋𝑦 )
67 66 stoic1a ( ( 𝑋𝑉 ∧ ¬ 𝑋𝑦 ) → ¬ 𝑦 ∈ { { 𝑋 } , { ∅ , 𝑋 } } )
68 67 adantlr ( ( ( 𝑋𝑉𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) ∧ ¬ 𝑋𝑦 ) → ¬ 𝑦 ∈ { { 𝑋 } , { ∅ , 𝑋 } } )
69 elunnel2 ( ( 𝑦 ∈ ( { ∅ , { ∅ } } ∪ { { 𝑋 } , { ∅ , 𝑋 } } ) ∧ ¬ 𝑦 ∈ { { 𝑋 } , { ∅ , 𝑋 } } ) → 𝑦 ∈ { ∅ , { ∅ } } )
70 46 68 69 syl2anc ( ( ( 𝑋𝑉𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) ∧ ¬ 𝑋𝑦 ) → 𝑦 ∈ { ∅ , { ∅ } } )
71 unieq ( 𝑦 = ∅ → 𝑦 = ∅ )
72 uni0 ∅ = ∅
73 71 72 eqtrdi ( 𝑦 = ∅ → 𝑦 = ∅ )
74 73 adantl ( ( 𝑦 ∈ { ∅ , { ∅ } } ∧ 𝑦 = ∅ ) → 𝑦 = ∅ )
75 elprn1 ( ( 𝑦 ∈ { ∅ , { ∅ } } ∧ 𝑦 ≠ ∅ ) → 𝑦 = { ∅ } )
76 18 75 sylan2 ( ( 𝑦 ∈ { ∅ , { ∅ } } ∧ ¬ 𝑦 = ∅ ) → 𝑦 = { ∅ } )
77 unieq ( 𝑦 = { ∅ } → 𝑦 = { ∅ } )
78 unisn0 { ∅ } = ∅
79 77 78 eqtrdi ( 𝑦 = { ∅ } → 𝑦 = ∅ )
80 76 79 syl ( ( 𝑦 ∈ { ∅ , { ∅ } } ∧ ¬ 𝑦 = ∅ ) → 𝑦 = ∅ )
81 74 80 pm2.61dan ( 𝑦 ∈ { ∅ , { ∅ } } → 𝑦 = ∅ )
82 70 81 syl ( ( ( 𝑋𝑉𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) ∧ ¬ 𝑋𝑦 ) → 𝑦 = ∅ )
83 2 a1i ( ( ( 𝑋𝑉𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) ∧ ¬ 𝑋𝑦 ) → ∅ ∈ { ∅ , 𝑋 } )
84 82 83 eqeltrd ( ( ( 𝑋𝑉𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) ∧ ¬ 𝑋𝑦 ) → 𝑦 ∈ { ∅ , 𝑋 } )
85 41 84 pm2.61dan ( ( 𝑋𝑉𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) → 𝑦 ∈ { ∅ , 𝑋 } )
86 85 a1d ( ( 𝑋𝑉𝑦 ∈ 𝒫 { ∅ , 𝑋 } ) → ( 𝑦 ≼ ω → 𝑦 ∈ { ∅ , 𝑋 } ) )
87 86 ralrimiva ( 𝑋𝑉 → ∀ 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ( 𝑦 ≼ ω → 𝑦 ∈ { ∅ , 𝑋 } ) )
88 prex { ∅ , 𝑋 } ∈ V
89 issal ( { ∅ , 𝑋 } ∈ V → ( { ∅ , 𝑋 } ∈ SAlg ↔ ( ∅ ∈ { ∅ , 𝑋 } ∧ ∀ 𝑦 ∈ { ∅ , 𝑋 } ( { ∅ , 𝑋 } ∖ 𝑦 ) ∈ { ∅ , 𝑋 } ∧ ∀ 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ( 𝑦 ≼ ω → 𝑦 ∈ { ∅ , 𝑋 } ) ) ) )
90 88 89 mp1i ( 𝑋𝑉 → ( { ∅ , 𝑋 } ∈ SAlg ↔ ( ∅ ∈ { ∅ , 𝑋 } ∧ ∀ 𝑦 ∈ { ∅ , 𝑋 } ( { ∅ , 𝑋 } ∖ 𝑦 ) ∈ { ∅ , 𝑋 } ∧ ∀ 𝑦 ∈ 𝒫 { ∅ , 𝑋 } ( 𝑦 ≼ ω → 𝑦 ∈ { ∅ , 𝑋 } ) ) ) )
91 3 30 87 90 mpbir3and ( 𝑋𝑉 → { ∅ , 𝑋 } ∈ SAlg )