| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 2 | 1 | prid1 | ⊢ ∅  ∈  { ∅ ,  𝑋 } | 
						
							| 3 | 2 | a1i | ⊢ ( 𝑋  ∈  𝑉  →  ∅  ∈  { ∅ ,  𝑋 } ) | 
						
							| 4 |  | uniprg | ⊢ ( ( ∅  ∈  V  ∧  𝑋  ∈  𝑉 )  →  ∪  { ∅ ,  𝑋 }  =  ( ∅  ∪  𝑋 ) ) | 
						
							| 5 | 1 4 | mpan | ⊢ ( 𝑋  ∈  𝑉  →  ∪  { ∅ ,  𝑋 }  =  ( ∅  ∪  𝑋 ) ) | 
						
							| 6 |  | 0un | ⊢ ( ∅  ∪  𝑋 )  =  𝑋 | 
						
							| 7 | 5 6 | eqtrdi | ⊢ ( 𝑋  ∈  𝑉  →  ∪  { ∅ ,  𝑋 }  =  𝑋 ) | 
						
							| 8 | 7 | difeq1d | ⊢ ( 𝑋  ∈  𝑉  →  ( ∪  { ∅ ,  𝑋 }  ∖  𝑦 )  =  ( 𝑋  ∖  𝑦 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  { ∅ ,  𝑋 } )  →  ( ∪  { ∅ ,  𝑋 }  ∖  𝑦 )  =  ( 𝑋  ∖  𝑦 ) ) | 
						
							| 10 |  | difeq2 | ⊢ ( 𝑦  =  ∅  →  ( 𝑋  ∖  𝑦 )  =  ( 𝑋  ∖  ∅ ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑦  =  ∅ )  →  ( 𝑋  ∖  𝑦 )  =  ( 𝑋  ∖  ∅ ) ) | 
						
							| 12 |  | dif0 | ⊢ ( 𝑋  ∖  ∅ )  =  𝑋 | 
						
							| 13 | 11 12 | eqtrdi | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑦  =  ∅ )  →  ( 𝑋  ∖  𝑦 )  =  𝑋 ) | 
						
							| 14 |  | prid2g | ⊢ ( 𝑋  ∈  𝑉  →  𝑋  ∈  { ∅ ,  𝑋 } ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑦  =  ∅ )  →  𝑋  ∈  { ∅ ,  𝑋 } ) | 
						
							| 16 | 13 15 | eqeltrd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑦  =  ∅ )  →  ( 𝑋  ∖  𝑦 )  ∈  { ∅ ,  𝑋 } ) | 
						
							| 17 | 16 | adantlr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  { ∅ ,  𝑋 } )  ∧  𝑦  =  ∅ )  →  ( 𝑋  ∖  𝑦 )  ∈  { ∅ ,  𝑋 } ) | 
						
							| 18 |  | neqne | ⊢ ( ¬  𝑦  =  ∅  →  𝑦  ≠  ∅ ) | 
						
							| 19 |  | elprn1 | ⊢ ( ( 𝑦  ∈  { ∅ ,  𝑋 }  ∧  𝑦  ≠  ∅ )  →  𝑦  =  𝑋 ) | 
						
							| 20 | 18 19 | sylan2 | ⊢ ( ( 𝑦  ∈  { ∅ ,  𝑋 }  ∧  ¬  𝑦  =  ∅ )  →  𝑦  =  𝑋 ) | 
						
							| 21 | 20 | adantll | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  { ∅ ,  𝑋 } )  ∧  ¬  𝑦  =  ∅ )  →  𝑦  =  𝑋 ) | 
						
							| 22 |  | difeq2 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑋  ∖  𝑦 )  =  ( 𝑋  ∖  𝑋 ) ) | 
						
							| 23 |  | difid | ⊢ ( 𝑋  ∖  𝑋 )  =  ∅ | 
						
							| 24 | 22 23 | eqtrdi | ⊢ ( 𝑦  =  𝑋  →  ( 𝑋  ∖  𝑦 )  =  ∅ ) | 
						
							| 25 | 2 | a1i | ⊢ ( 𝑦  =  𝑋  →  ∅  ∈  { ∅ ,  𝑋 } ) | 
						
							| 26 | 24 25 | eqeltrd | ⊢ ( 𝑦  =  𝑋  →  ( 𝑋  ∖  𝑦 )  ∈  { ∅ ,  𝑋 } ) | 
						
							| 27 | 21 26 | syl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  { ∅ ,  𝑋 } )  ∧  ¬  𝑦  =  ∅ )  →  ( 𝑋  ∖  𝑦 )  ∈  { ∅ ,  𝑋 } ) | 
						
							| 28 | 17 27 | pm2.61dan | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  { ∅ ,  𝑋 } )  →  ( 𝑋  ∖  𝑦 )  ∈  { ∅ ,  𝑋 } ) | 
						
							| 29 | 9 28 | eqeltrd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  { ∅ ,  𝑋 } )  →  ( ∪  { ∅ ,  𝑋 }  ∖  𝑦 )  ∈  { ∅ ,  𝑋 } ) | 
						
							| 30 | 29 | ralrimiva | ⊢ ( 𝑋  ∈  𝑉  →  ∀ 𝑦  ∈  { ∅ ,  𝑋 } ( ∪  { ∅ ,  𝑋 }  ∖  𝑦 )  ∈  { ∅ ,  𝑋 } ) | 
						
							| 31 |  | elpwi | ⊢ ( 𝑦  ∈  𝒫  { ∅ ,  𝑋 }  →  𝑦  ⊆  { ∅ ,  𝑋 } ) | 
						
							| 32 | 31 | unissd | ⊢ ( 𝑦  ∈  𝒫  { ∅ ,  𝑋 }  →  ∪  𝑦  ⊆  ∪  { ∅ ,  𝑋 } ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  𝒫  { ∅ ,  𝑋 } )  →  ∪  𝑦  ⊆  ∪  { ∅ ,  𝑋 } ) | 
						
							| 34 | 7 | adantr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  𝒫  { ∅ ,  𝑋 } )  →  ∪  { ∅ ,  𝑋 }  =  𝑋 ) | 
						
							| 35 | 33 34 | sseqtrd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  𝒫  { ∅ ,  𝑋 } )  →  ∪  𝑦  ⊆  𝑋 ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  𝒫  { ∅ ,  𝑋 } )  ∧  𝑋  ∈  𝑦 )  →  ∪  𝑦  ⊆  𝑋 ) | 
						
							| 37 |  | elssuni | ⊢ ( 𝑋  ∈  𝑦  →  𝑋  ⊆  ∪  𝑦 ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  𝒫  { ∅ ,  𝑋 } )  ∧  𝑋  ∈  𝑦 )  →  𝑋  ⊆  ∪  𝑦 ) | 
						
							| 39 | 36 38 | eqssd | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  𝒫  { ∅ ,  𝑋 } )  ∧  𝑋  ∈  𝑦 )  →  ∪  𝑦  =  𝑋 ) | 
						
							| 40 | 14 | ad2antrr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  𝒫  { ∅ ,  𝑋 } )  ∧  𝑋  ∈  𝑦 )  →  𝑋  ∈  { ∅ ,  𝑋 } ) | 
						
							| 41 | 39 40 | eqeltrd | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  𝒫  { ∅ ,  𝑋 } )  ∧  𝑋  ∈  𝑦 )  →  ∪  𝑦  ∈  { ∅ ,  𝑋 } ) | 
						
							| 42 |  | id | ⊢ ( 𝑦  ∈  𝒫  { ∅ ,  𝑋 }  →  𝑦  ∈  𝒫  { ∅ ,  𝑋 } ) | 
						
							| 43 |  | pwpr | ⊢ 𝒫  { ∅ ,  𝑋 }  =  ( { ∅ ,  { ∅ } }  ∪  { { 𝑋 } ,  { ∅ ,  𝑋 } } ) | 
						
							| 44 | 42 43 | eleqtrdi | ⊢ ( 𝑦  ∈  𝒫  { ∅ ,  𝑋 }  →  𝑦  ∈  ( { ∅ ,  { ∅ } }  ∪  { { 𝑋 } ,  { ∅ ,  𝑋 } } ) ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝑦  ∈  𝒫  { ∅ ,  𝑋 }  ∧  ¬  𝑋  ∈  𝑦 )  →  𝑦  ∈  ( { ∅ ,  { ∅ } }  ∪  { { 𝑋 } ,  { ∅ ,  𝑋 } } ) ) | 
						
							| 46 | 45 | adantll | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  𝒫  { ∅ ,  𝑋 } )  ∧  ¬  𝑋  ∈  𝑦 )  →  𝑦  ∈  ( { ∅ ,  { ∅ } }  ∪  { { 𝑋 } ,  { ∅ ,  𝑋 } } ) ) | 
						
							| 47 |  | snidg | ⊢ ( 𝑋  ∈  𝑉  →  𝑋  ∈  { 𝑋 } ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑦  =  { 𝑋 } )  →  𝑋  ∈  { 𝑋 } ) | 
						
							| 49 |  | id | ⊢ ( 𝑦  =  { 𝑋 }  →  𝑦  =  { 𝑋 } ) | 
						
							| 50 | 49 | eqcomd | ⊢ ( 𝑦  =  { 𝑋 }  →  { 𝑋 }  =  𝑦 ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑦  =  { 𝑋 } )  →  { 𝑋 }  =  𝑦 ) | 
						
							| 52 | 48 51 | eleqtrd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑦  =  { 𝑋 } )  →  𝑋  ∈  𝑦 ) | 
						
							| 53 | 52 | adantlr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  { { 𝑋 } ,  { ∅ ,  𝑋 } } )  ∧  𝑦  =  { 𝑋 } )  →  𝑋  ∈  𝑦 ) | 
						
							| 54 |  | id | ⊢ ( 𝑋  ∈  𝑉  →  𝑋  ∈  𝑉 ) | 
						
							| 55 | 54 | ad2antrr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  { { 𝑋 } ,  { ∅ ,  𝑋 } } )  ∧  ¬  𝑦  =  { 𝑋 } )  →  𝑋  ∈  𝑉 ) | 
						
							| 56 |  | neqne | ⊢ ( ¬  𝑦  =  { 𝑋 }  →  𝑦  ≠  { 𝑋 } ) | 
						
							| 57 |  | elprn1 | ⊢ ( ( 𝑦  ∈  { { 𝑋 } ,  { ∅ ,  𝑋 } }  ∧  𝑦  ≠  { 𝑋 } )  →  𝑦  =  { ∅ ,  𝑋 } ) | 
						
							| 58 | 56 57 | sylan2 | ⊢ ( ( 𝑦  ∈  { { 𝑋 } ,  { ∅ ,  𝑋 } }  ∧  ¬  𝑦  =  { 𝑋 } )  →  𝑦  =  { ∅ ,  𝑋 } ) | 
						
							| 59 | 58 | adantll | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  { { 𝑋 } ,  { ∅ ,  𝑋 } } )  ∧  ¬  𝑦  =  { 𝑋 } )  →  𝑦  =  { ∅ ,  𝑋 } ) | 
						
							| 60 | 14 | adantr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑦  =  { ∅ ,  𝑋 } )  →  𝑋  ∈  { ∅ ,  𝑋 } ) | 
						
							| 61 |  | id | ⊢ ( 𝑦  =  { ∅ ,  𝑋 }  →  𝑦  =  { ∅ ,  𝑋 } ) | 
						
							| 62 | 61 | eqcomd | ⊢ ( 𝑦  =  { ∅ ,  𝑋 }  →  { ∅ ,  𝑋 }  =  𝑦 ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑦  =  { ∅ ,  𝑋 } )  →  { ∅ ,  𝑋 }  =  𝑦 ) | 
						
							| 64 | 60 63 | eleqtrd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑦  =  { ∅ ,  𝑋 } )  →  𝑋  ∈  𝑦 ) | 
						
							| 65 | 55 59 64 | syl2anc | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  { { 𝑋 } ,  { ∅ ,  𝑋 } } )  ∧  ¬  𝑦  =  { 𝑋 } )  →  𝑋  ∈  𝑦 ) | 
						
							| 66 | 53 65 | pm2.61dan | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  { { 𝑋 } ,  { ∅ ,  𝑋 } } )  →  𝑋  ∈  𝑦 ) | 
						
							| 67 | 66 | stoic1a | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ¬  𝑋  ∈  𝑦 )  →  ¬  𝑦  ∈  { { 𝑋 } ,  { ∅ ,  𝑋 } } ) | 
						
							| 68 | 67 | adantlr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  𝒫  { ∅ ,  𝑋 } )  ∧  ¬  𝑋  ∈  𝑦 )  →  ¬  𝑦  ∈  { { 𝑋 } ,  { ∅ ,  𝑋 } } ) | 
						
							| 69 |  | elunnel2 | ⊢ ( ( 𝑦  ∈  ( { ∅ ,  { ∅ } }  ∪  { { 𝑋 } ,  { ∅ ,  𝑋 } } )  ∧  ¬  𝑦  ∈  { { 𝑋 } ,  { ∅ ,  𝑋 } } )  →  𝑦  ∈  { ∅ ,  { ∅ } } ) | 
						
							| 70 | 46 68 69 | syl2anc | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  𝒫  { ∅ ,  𝑋 } )  ∧  ¬  𝑋  ∈  𝑦 )  →  𝑦  ∈  { ∅ ,  { ∅ } } ) | 
						
							| 71 |  | unieq | ⊢ ( 𝑦  =  ∅  →  ∪  𝑦  =  ∪  ∅ ) | 
						
							| 72 |  | uni0 | ⊢ ∪  ∅  =  ∅ | 
						
							| 73 | 71 72 | eqtrdi | ⊢ ( 𝑦  =  ∅  →  ∪  𝑦  =  ∅ ) | 
						
							| 74 | 73 | adantl | ⊢ ( ( 𝑦  ∈  { ∅ ,  { ∅ } }  ∧  𝑦  =  ∅ )  →  ∪  𝑦  =  ∅ ) | 
						
							| 75 |  | elprn1 | ⊢ ( ( 𝑦  ∈  { ∅ ,  { ∅ } }  ∧  𝑦  ≠  ∅ )  →  𝑦  =  { ∅ } ) | 
						
							| 76 | 18 75 | sylan2 | ⊢ ( ( 𝑦  ∈  { ∅ ,  { ∅ } }  ∧  ¬  𝑦  =  ∅ )  →  𝑦  =  { ∅ } ) | 
						
							| 77 |  | unieq | ⊢ ( 𝑦  =  { ∅ }  →  ∪  𝑦  =  ∪  { ∅ } ) | 
						
							| 78 |  | unisn0 | ⊢ ∪  { ∅ }  =  ∅ | 
						
							| 79 | 77 78 | eqtrdi | ⊢ ( 𝑦  =  { ∅ }  →  ∪  𝑦  =  ∅ ) | 
						
							| 80 | 76 79 | syl | ⊢ ( ( 𝑦  ∈  { ∅ ,  { ∅ } }  ∧  ¬  𝑦  =  ∅ )  →  ∪  𝑦  =  ∅ ) | 
						
							| 81 | 74 80 | pm2.61dan | ⊢ ( 𝑦  ∈  { ∅ ,  { ∅ } }  →  ∪  𝑦  =  ∅ ) | 
						
							| 82 | 70 81 | syl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  𝒫  { ∅ ,  𝑋 } )  ∧  ¬  𝑋  ∈  𝑦 )  →  ∪  𝑦  =  ∅ ) | 
						
							| 83 | 2 | a1i | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  𝒫  { ∅ ,  𝑋 } )  ∧  ¬  𝑋  ∈  𝑦 )  →  ∅  ∈  { ∅ ,  𝑋 } ) | 
						
							| 84 | 82 83 | eqeltrd | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  𝒫  { ∅ ,  𝑋 } )  ∧  ¬  𝑋  ∈  𝑦 )  →  ∪  𝑦  ∈  { ∅ ,  𝑋 } ) | 
						
							| 85 | 41 84 | pm2.61dan | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  𝒫  { ∅ ,  𝑋 } )  →  ∪  𝑦  ∈  { ∅ ,  𝑋 } ) | 
						
							| 86 | 85 | a1d | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  𝒫  { ∅ ,  𝑋 } )  →  ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  { ∅ ,  𝑋 } ) ) | 
						
							| 87 | 86 | ralrimiva | ⊢ ( 𝑋  ∈  𝑉  →  ∀ 𝑦  ∈  𝒫  { ∅ ,  𝑋 } ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  { ∅ ,  𝑋 } ) ) | 
						
							| 88 |  | prex | ⊢ { ∅ ,  𝑋 }  ∈  V | 
						
							| 89 |  | issal | ⊢ ( { ∅ ,  𝑋 }  ∈  V  →  ( { ∅ ,  𝑋 }  ∈  SAlg  ↔  ( ∅  ∈  { ∅ ,  𝑋 }  ∧  ∀ 𝑦  ∈  { ∅ ,  𝑋 } ( ∪  { ∅ ,  𝑋 }  ∖  𝑦 )  ∈  { ∅ ,  𝑋 }  ∧  ∀ 𝑦  ∈  𝒫  { ∅ ,  𝑋 } ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  { ∅ ,  𝑋 } ) ) ) ) | 
						
							| 90 | 88 89 | mp1i | ⊢ ( 𝑋  ∈  𝑉  →  ( { ∅ ,  𝑋 }  ∈  SAlg  ↔  ( ∅  ∈  { ∅ ,  𝑋 }  ∧  ∀ 𝑦  ∈  { ∅ ,  𝑋 } ( ∪  { ∅ ,  𝑋 }  ∖  𝑦 )  ∈  { ∅ ,  𝑋 }  ∧  ∀ 𝑦  ∈  𝒫  { ∅ ,  𝑋 } ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  { ∅ ,  𝑋 } ) ) ) ) | 
						
							| 91 | 3 30 87 90 | mpbir3and | ⊢ ( 𝑋  ∈  𝑉  →  { ∅ ,  𝑋 }  ∈  SAlg ) |