Step |
Hyp |
Ref |
Expression |
1 |
|
difeq2 |
⊢ ( 𝑦 = 𝐸 → ( ∪ 𝑆 ∖ 𝑦 ) = ( ∪ 𝑆 ∖ 𝐸 ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑦 = 𝐸 → ( ( ∪ 𝑆 ∖ 𝑦 ) ∈ 𝑆 ↔ ( ∪ 𝑆 ∖ 𝐸 ) ∈ 𝑆 ) ) |
3 |
|
issal |
⊢ ( 𝑆 ∈ SAlg → ( 𝑆 ∈ SAlg ↔ ( ∅ ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆 ) ) ) ) |
4 |
3
|
ibi |
⊢ ( 𝑆 ∈ SAlg → ( ∅ ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆 ) ) ) |
5 |
4
|
simp2d |
⊢ ( 𝑆 ∈ SAlg → ∀ 𝑦 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑦 ) ∈ 𝑆 ) |
6 |
5
|
adantr |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑦 ) ∈ 𝑆 ) |
7 |
|
simpr |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ) → 𝐸 ∈ 𝑆 ) |
8 |
2 6 7
|
rspcdva |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ) → ( ∪ 𝑆 ∖ 𝐸 ) ∈ 𝑆 ) |