Metamath Proof Explorer


Theorem saldifcl

Description: The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion saldifcl ( ( 𝑆 ∈ SAlg ∧ 𝐸𝑆 ) → ( 𝑆𝐸 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 difeq2 ( 𝑦 = 𝐸 → ( 𝑆𝑦 ) = ( 𝑆𝐸 ) )
2 1 eleq1d ( 𝑦 = 𝐸 → ( ( 𝑆𝑦 ) ∈ 𝑆 ↔ ( 𝑆𝐸 ) ∈ 𝑆 ) )
3 issal ( 𝑆 ∈ SAlg → ( 𝑆 ∈ SAlg ↔ ( ∅ ∈ 𝑆 ∧ ∀ 𝑦𝑆 ( 𝑆𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → 𝑦𝑆 ) ) ) )
4 3 ibi ( 𝑆 ∈ SAlg → ( ∅ ∈ 𝑆 ∧ ∀ 𝑦𝑆 ( 𝑆𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → 𝑦𝑆 ) ) )
5 4 simp2d ( 𝑆 ∈ SAlg → ∀ 𝑦𝑆 ( 𝑆𝑦 ) ∈ 𝑆 )
6 5 adantr ( ( 𝑆 ∈ SAlg ∧ 𝐸𝑆 ) → ∀ 𝑦𝑆 ( 𝑆𝑦 ) ∈ 𝑆 )
7 simpr ( ( 𝑆 ∈ SAlg ∧ 𝐸𝑆 ) → 𝐸𝑆 )
8 2 6 7 rspcdva ( ( 𝑆 ∈ SAlg ∧ 𝐸𝑆 ) → ( 𝑆𝐸 ) ∈ 𝑆 )