Metamath Proof Explorer
		
		
		
		Description:  The empty set belongs to every sigma-algebra.  (Contributed by Glauco
       Siliprandi, 17-Aug-2020)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | 0sal | ⊢  ( 𝑆  ∈  SAlg  →  ∅  ∈  𝑆 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issal | ⊢ ( 𝑆  ∈  SAlg  →  ( 𝑆  ∈  SAlg  ↔  ( ∅  ∈  𝑆  ∧  ∀ 𝑦  ∈  𝑆 ( ∪  𝑆  ∖  𝑦 )  ∈  𝑆  ∧  ∀ 𝑦  ∈  𝒫  𝑆 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝑆 ) ) ) ) | 
						
							| 2 | 1 | ibi | ⊢ ( 𝑆  ∈  SAlg  →  ( ∅  ∈  𝑆  ∧  ∀ 𝑦  ∈  𝑆 ( ∪  𝑆  ∖  𝑦 )  ∈  𝑆  ∧  ∀ 𝑦  ∈  𝒫  𝑆 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝑆 ) ) ) | 
						
							| 3 | 2 | simp1d | ⊢ ( 𝑆  ∈  SAlg  →  ∅  ∈  𝑆 ) |