Metamath Proof Explorer


Theorem 0sal

Description: The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion 0sal ( 𝑆 ∈ SAlg → ∅ ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 issal ( 𝑆 ∈ SAlg → ( 𝑆 ∈ SAlg ↔ ( ∅ ∈ 𝑆 ∧ ∀ 𝑦𝑆 ( 𝑆𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → 𝑦𝑆 ) ) ) )
2 1 ibi ( 𝑆 ∈ SAlg → ( ∅ ∈ 𝑆 ∧ ∀ 𝑦𝑆 ( 𝑆𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → 𝑦𝑆 ) ) )
3 2 simp1d ( 𝑆 ∈ SAlg → ∅ ∈ 𝑆 )