Metamath Proof Explorer
Description: The empty set belongs to every sigma-algebra. (Contributed by Glauco
Siliprandi, 17-Aug-2020)
|
|
Ref |
Expression |
|
Assertion |
0sal |
⊢ ( 𝑆 ∈ SAlg → ∅ ∈ 𝑆 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
issal |
⊢ ( 𝑆 ∈ SAlg → ( 𝑆 ∈ SAlg ↔ ( ∅ ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆 ) ) ) ) |
2 |
1
|
ibi |
⊢ ( 𝑆 ∈ SAlg → ( ∅ ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆 ) ) ) |
3 |
2
|
simp1d |
⊢ ( 𝑆 ∈ SAlg → ∅ ∈ 𝑆 ) |