| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-salgen | ⊢ SalGen  =  ( 𝑥  ∈  V  ↦  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑥  ∧  𝑥  ⊆  𝑠 ) } ) | 
						
							| 2 | 1 | a1i | ⊢ ( 𝑋  ∈  𝑉  →  SalGen  =  ( 𝑥  ∈  V  ↦  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑥  ∧  𝑥  ⊆  𝑠 ) } ) ) | 
						
							| 3 |  | unieq | ⊢ ( 𝑥  =  𝑋  →  ∪  𝑥  =  ∪  𝑋 ) | 
						
							| 4 | 3 | eqeq2d | ⊢ ( 𝑥  =  𝑋  →  ( ∪  𝑠  =  ∪  𝑥  ↔  ∪  𝑠  =  ∪  𝑋 ) ) | 
						
							| 5 |  | sseq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  ⊆  𝑠  ↔  𝑋  ⊆  𝑠 ) ) | 
						
							| 6 | 4 5 | anbi12d | ⊢ ( 𝑥  =  𝑋  →  ( ( ∪  𝑠  =  ∪  𝑥  ∧  𝑥  ⊆  𝑠 )  ↔  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) ) ) | 
						
							| 7 | 6 | rabbidv | ⊢ ( 𝑥  =  𝑋  →  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑥  ∧  𝑥  ⊆  𝑠 ) }  =  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } ) | 
						
							| 8 | 7 | inteqd | ⊢ ( 𝑥  =  𝑋  →  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑥  ∧  𝑥  ⊆  𝑠 ) }  =  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑥  =  𝑋 )  →  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑥  ∧  𝑥  ⊆  𝑠 ) }  =  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } ) | 
						
							| 10 |  | elex | ⊢ ( 𝑋  ∈  𝑉  →  𝑋  ∈  V ) | 
						
							| 11 |  | uniexg | ⊢ ( 𝑋  ∈  𝑉  →  ∪  𝑋  ∈  V ) | 
						
							| 12 |  | pwsal | ⊢ ( ∪  𝑋  ∈  V  →  𝒫  ∪  𝑋  ∈  SAlg ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝑋  ∈  𝑉  →  𝒫  ∪  𝑋  ∈  SAlg ) | 
						
							| 14 |  | unipw | ⊢ ∪  𝒫  ∪  𝑋  =  ∪  𝑋 | 
						
							| 15 | 14 | a1i | ⊢ ( 𝑋  ∈  𝑉  →  ∪  𝒫  ∪  𝑋  =  ∪  𝑋 ) | 
						
							| 16 |  | pwuni | ⊢ 𝑋  ⊆  𝒫  ∪  𝑋 | 
						
							| 17 | 16 | a1i | ⊢ ( 𝑋  ∈  𝑉  →  𝑋  ⊆  𝒫  ∪  𝑋 ) | 
						
							| 18 | 13 15 17 | jca32 | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝒫  ∪  𝑋  ∈  SAlg  ∧  ( ∪  𝒫  ∪  𝑋  =  ∪  𝑋  ∧  𝑋  ⊆  𝒫  ∪  𝑋 ) ) ) | 
						
							| 19 |  | unieq | ⊢ ( 𝑠  =  𝒫  ∪  𝑋  →  ∪  𝑠  =  ∪  𝒫  ∪  𝑋 ) | 
						
							| 20 | 19 | eqeq1d | ⊢ ( 𝑠  =  𝒫  ∪  𝑋  →  ( ∪  𝑠  =  ∪  𝑋  ↔  ∪  𝒫  ∪  𝑋  =  ∪  𝑋 ) ) | 
						
							| 21 |  | sseq2 | ⊢ ( 𝑠  =  𝒫  ∪  𝑋  →  ( 𝑋  ⊆  𝑠  ↔  𝑋  ⊆  𝒫  ∪  𝑋 ) ) | 
						
							| 22 | 20 21 | anbi12d | ⊢ ( 𝑠  =  𝒫  ∪  𝑋  →  ( ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 )  ↔  ( ∪  𝒫  ∪  𝑋  =  ∪  𝑋  ∧  𝑋  ⊆  𝒫  ∪  𝑋 ) ) ) | 
						
							| 23 | 22 | elrab | ⊢ ( 𝒫  ∪  𝑋  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  ↔  ( 𝒫  ∪  𝑋  ∈  SAlg  ∧  ( ∪  𝒫  ∪  𝑋  =  ∪  𝑋  ∧  𝑋  ⊆  𝒫  ∪  𝑋 ) ) ) | 
						
							| 24 | 18 23 | sylibr | ⊢ ( 𝑋  ∈  𝑉  →  𝒫  ∪  𝑋  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } ) | 
						
							| 25 | 24 | ne0d | ⊢ ( 𝑋  ∈  𝑉  →  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  ≠  ∅ ) | 
						
							| 26 |  | intex | ⊢ ( { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  ≠  ∅  ↔  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  ∈  V ) | 
						
							| 27 | 25 26 | sylib | ⊢ ( 𝑋  ∈  𝑉  →  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  ∈  V ) | 
						
							| 28 | 2 9 10 27 | fvmptd | ⊢ ( 𝑋  ∈  𝑉  →  ( SalGen ‘ 𝑋 )  =  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } ) |