Metamath Proof Explorer


Theorem salgenval

Description: The sigma-algebra generated by a set. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Assertion salgenval ( 𝑋𝑉 → ( SalGen ‘ 𝑋 ) = { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } )

Proof

Step Hyp Ref Expression
1 df-salgen SalGen = ( 𝑥 ∈ V ↦ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠 ) } )
2 1 a1i ( 𝑋𝑉 → SalGen = ( 𝑥 ∈ V ↦ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠 ) } ) )
3 unieq ( 𝑥 = 𝑋 𝑥 = 𝑋 )
4 3 eqeq2d ( 𝑥 = 𝑋 → ( 𝑠 = 𝑥 𝑠 = 𝑋 ) )
5 sseq1 ( 𝑥 = 𝑋 → ( 𝑥𝑠𝑋𝑠 ) )
6 4 5 anbi12d ( 𝑥 = 𝑋 → ( ( 𝑠 = 𝑥𝑥𝑠 ) ↔ ( 𝑠 = 𝑋𝑋𝑠 ) ) )
7 6 rabbidv ( 𝑥 = 𝑋 → { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠 ) } = { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } )
8 7 inteqd ( 𝑥 = 𝑋 { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠 ) } = { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } )
9 8 adantl ( ( 𝑋𝑉𝑥 = 𝑋 ) → { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠 ) } = { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } )
10 elex ( 𝑋𝑉𝑋 ∈ V )
11 uniexg ( 𝑋𝑉 𝑋 ∈ V )
12 pwsal ( 𝑋 ∈ V → 𝒫 𝑋 ∈ SAlg )
13 11 12 syl ( 𝑋𝑉 → 𝒫 𝑋 ∈ SAlg )
14 unipw 𝒫 𝑋 = 𝑋
15 14 a1i ( 𝑋𝑉 𝒫 𝑋 = 𝑋 )
16 pwuni 𝑋 ⊆ 𝒫 𝑋
17 16 a1i ( 𝑋𝑉𝑋 ⊆ 𝒫 𝑋 )
18 13 15 17 jca32 ( 𝑋𝑉 → ( 𝒫 𝑋 ∈ SAlg ∧ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋 ) ) )
19 unieq ( 𝑠 = 𝒫 𝑋 𝑠 = 𝒫 𝑋 )
20 19 eqeq1d ( 𝑠 = 𝒫 𝑋 → ( 𝑠 = 𝑋 𝒫 𝑋 = 𝑋 ) )
21 sseq2 ( 𝑠 = 𝒫 𝑋 → ( 𝑋𝑠𝑋 ⊆ 𝒫 𝑋 ) )
22 20 21 anbi12d ( 𝑠 = 𝒫 𝑋 → ( ( 𝑠 = 𝑋𝑋𝑠 ) ↔ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋 ) ) )
23 22 elrab ( 𝒫 𝑋 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ↔ ( 𝒫 𝑋 ∈ SAlg ∧ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋 ) ) )
24 18 23 sylibr ( 𝑋𝑉 → 𝒫 𝑋 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } )
25 24 ne0d ( 𝑋𝑉 → { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ≠ ∅ )
26 intex ( { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ≠ ∅ ↔ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ∈ V )
27 25 26 sylib ( 𝑋𝑉 { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ∈ V )
28 2 9 10 27 fvmptd ( 𝑋𝑉 → ( SalGen ‘ 𝑋 ) = { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } )