| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-salgen |
⊢ SalGen = ( 𝑥 ∈ V ↦ ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠 ) } ) |
| 2 |
1
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → SalGen = ( 𝑥 ∈ V ↦ ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠 ) } ) ) |
| 3 |
|
unieq |
⊢ ( 𝑥 = 𝑋 → ∪ 𝑥 = ∪ 𝑋 ) |
| 4 |
3
|
eqeq2d |
⊢ ( 𝑥 = 𝑋 → ( ∪ 𝑠 = ∪ 𝑥 ↔ ∪ 𝑠 = ∪ 𝑋 ) ) |
| 5 |
|
sseq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ⊆ 𝑠 ↔ 𝑋 ⊆ 𝑠 ) ) |
| 6 |
4 5
|
anbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠 ) ↔ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) ) ) |
| 7 |
6
|
rabbidv |
⊢ ( 𝑥 = 𝑋 → { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠 ) } = { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) |
| 8 |
7
|
inteqd |
⊢ ( 𝑥 = 𝑋 → ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠 ) } = ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑥 = 𝑋 ) → ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠 ) } = ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) |
| 10 |
|
elex |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ V ) |
| 11 |
|
uniexg |
⊢ ( 𝑋 ∈ 𝑉 → ∪ 𝑋 ∈ V ) |
| 12 |
|
pwsal |
⊢ ( ∪ 𝑋 ∈ V → 𝒫 ∪ 𝑋 ∈ SAlg ) |
| 13 |
11 12
|
syl |
⊢ ( 𝑋 ∈ 𝑉 → 𝒫 ∪ 𝑋 ∈ SAlg ) |
| 14 |
|
unipw |
⊢ ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 |
| 15 |
14
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ) |
| 16 |
|
pwuni |
⊢ 𝑋 ⊆ 𝒫 ∪ 𝑋 |
| 17 |
16
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ⊆ 𝒫 ∪ 𝑋 ) |
| 18 |
13 15 17
|
jca32 |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝒫 ∪ 𝑋 ∈ SAlg ∧ ( ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋 ) ) ) |
| 19 |
|
unieq |
⊢ ( 𝑠 = 𝒫 ∪ 𝑋 → ∪ 𝑠 = ∪ 𝒫 ∪ 𝑋 ) |
| 20 |
19
|
eqeq1d |
⊢ ( 𝑠 = 𝒫 ∪ 𝑋 → ( ∪ 𝑠 = ∪ 𝑋 ↔ ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ) ) |
| 21 |
|
sseq2 |
⊢ ( 𝑠 = 𝒫 ∪ 𝑋 → ( 𝑋 ⊆ 𝑠 ↔ 𝑋 ⊆ 𝒫 ∪ 𝑋 ) ) |
| 22 |
20 21
|
anbi12d |
⊢ ( 𝑠 = 𝒫 ∪ 𝑋 → ( ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) ↔ ( ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋 ) ) ) |
| 23 |
22
|
elrab |
⊢ ( 𝒫 ∪ 𝑋 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ↔ ( 𝒫 ∪ 𝑋 ∈ SAlg ∧ ( ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋 ) ) ) |
| 24 |
18 23
|
sylibr |
⊢ ( 𝑋 ∈ 𝑉 → 𝒫 ∪ 𝑋 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) |
| 25 |
24
|
ne0d |
⊢ ( 𝑋 ∈ 𝑉 → { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ≠ ∅ ) |
| 26 |
|
intex |
⊢ ( { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ≠ ∅ ↔ ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ∈ V ) |
| 27 |
25 26
|
sylib |
⊢ ( 𝑋 ∈ 𝑉 → ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ∈ V ) |
| 28 |
2 9 10 27
|
fvmptd |
⊢ ( 𝑋 ∈ 𝑉 → ( SalGen ‘ 𝑋 ) = ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) |