Metamath Proof Explorer


Theorem salgenval

Description: The sigma-algebra generated by a set. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Assertion salgenval X V SalGen X = s SAlg | s = X X s

Proof

Step Hyp Ref Expression
1 df-salgen SalGen = x V s SAlg | s = x x s
2 1 a1i X V SalGen = x V s SAlg | s = x x s
3 unieq x = X x = X
4 3 eqeq2d x = X s = x s = X
5 sseq1 x = X x s X s
6 4 5 anbi12d x = X s = x x s s = X X s
7 6 rabbidv x = X s SAlg | s = x x s = s SAlg | s = X X s
8 7 inteqd x = X s SAlg | s = x x s = s SAlg | s = X X s
9 8 adantl X V x = X s SAlg | s = x x s = s SAlg | s = X X s
10 elex X V X V
11 uniexg X V X V
12 pwsal X V 𝒫 X SAlg
13 11 12 syl X V 𝒫 X SAlg
14 unipw 𝒫 X = X
15 14 a1i X V 𝒫 X = X
16 pwuni X 𝒫 X
17 16 a1i X V X 𝒫 X
18 13 15 17 jca32 X V 𝒫 X SAlg 𝒫 X = X X 𝒫 X
19 unieq s = 𝒫 X s = 𝒫 X
20 19 eqeq1d s = 𝒫 X s = X 𝒫 X = X
21 sseq2 s = 𝒫 X X s X 𝒫 X
22 20 21 anbi12d s = 𝒫 X s = X X s 𝒫 X = X X 𝒫 X
23 22 elrab 𝒫 X s SAlg | s = X X s 𝒫 X SAlg 𝒫 X = X X 𝒫 X
24 18 23 sylibr X V 𝒫 X s SAlg | s = X X s
25 24 ne0d X V s SAlg | s = X X s
26 intex s SAlg | s = X X s s SAlg | s = X X s V
27 25 26 sylib X V s SAlg | s = X X s V
28 2 9 10 27 fvmptd X V SalGen X = s SAlg | s = X X s