Metamath Proof Explorer


Definition df-salgen

Description: Define the sigma-algebra generated by a given set. Definition 111G (b) of Fremlin1 p. 13. The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set, see dfsalgen2 . The base set of the sigma-algebras used for the intersection needs to be the same, otherwise the resulting set is not guaranteed to be a sigma-algebra, as shown in the counterexample salgencntex . (Contributed by Glauco Siliprandi, 17-Aug-2020) (Revised by Glauco Siliprandi, 1-Jan-2021)

Ref Expression
Assertion df-salgen SalGen = x V s SAlg | s = x x s

Detailed syntax breakdown

Step Hyp Ref Expression
0 csalgen class SalGen
1 vx setvar x
2 cvv class V
3 vs setvar s
4 csalg class SAlg
5 3 cv setvar s
6 5 cuni class s
7 1 cv setvar x
8 7 cuni class x
9 6 8 wceq wff s = x
10 7 5 wss wff x s
11 9 10 wa wff s = x x s
12 11 3 4 crab class s SAlg | s = x x s
13 12 cint class s SAlg | s = x x s
14 1 2 13 cmpt class x V s SAlg | s = x x s
15 0 14 wceq wff SalGen = x V s SAlg | s = x x s