Metamath Proof Explorer


Definition df-salgen

Description: Define the sigma-algebra generated by a given set. Definition 111G (b) of Fremlin1 p. 13. The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set, see dfsalgen2 . The base set of the sigma-algebras used for the intersection needs to be the same, otherwise the resulting set is not guaranteed to be a sigma-algebra, as shown in the counterexample salgencntex . (Contributed by Glauco Siliprandi, 17-Aug-2020) (Revised by Glauco Siliprandi, 1-Jan-2021)

Ref Expression
Assertion df-salgen SalGen=xVsSAlg|s=xxs

Detailed syntax breakdown

Step Hyp Ref Expression
0 csalgen classSalGen
1 vx setvarx
2 cvv classV
3 vs setvars
4 csalg classSAlg
5 3 cv setvars
6 5 cuni classs
7 1 cv setvarx
8 7 cuni classx
9 6 8 wceq wffs=x
10 7 5 wss wffxs
11 9 10 wa wffs=xxs
12 11 3 4 crab classsSAlg|s=xxs
13 12 cint classsSAlg|s=xxs
14 1 2 13 cmpt classxVsSAlg|s=xxs
15 0 14 wceq wffSalGen=xVsSAlg|s=xxs