Metamath Proof Explorer


Definition df-salgen

Description: Define the sigma-algebra generated by a given set. Definition 111G (b) of Fremlin1 p. 13. The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set, see dfsalgen2 . The base set of the sigma-algebras used for the intersection needs to be the same, otherwise the resulting set is not guaranteed to be a sigma-algebra, as shown in the counterexample salgencntex . (Contributed by Glauco Siliprandi, 17-Aug-2020) (Revised by Glauco Siliprandi, 1-Jan-2021)

Ref Expression
Assertion df-salgen
|- SalGen = ( x e. _V |-> |^| { s e. SAlg | ( U. s = U. x /\ x C_ s ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csalgen
 |-  SalGen
1 vx
 |-  x
2 cvv
 |-  _V
3 vs
 |-  s
4 csalg
 |-  SAlg
5 3 cv
 |-  s
6 5 cuni
 |-  U. s
7 1 cv
 |-  x
8 7 cuni
 |-  U. x
9 6 8 wceq
 |-  U. s = U. x
10 7 5 wss
 |-  x C_ s
11 9 10 wa
 |-  ( U. s = U. x /\ x C_ s )
12 11 3 4 crab
 |-  { s e. SAlg | ( U. s = U. x /\ x C_ s ) }
13 12 cint
 |-  |^| { s e. SAlg | ( U. s = U. x /\ x C_ s ) }
14 1 2 13 cmpt
 |-  ( x e. _V |-> |^| { s e. SAlg | ( U. s = U. x /\ x C_ s ) } )
15 0 14 wceq
 |-  SalGen = ( x e. _V |-> |^| { s e. SAlg | ( U. s = U. x /\ x C_ s ) } )