Metamath Proof Explorer


Definition df-salgen

Description: Define the sigma-algebra generated by a given set. Definition 111G (b) of Fremlin1 p. 13. The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set, see dfsalgen2 . The base set of the sigma-algebras used for the intersection needs to be the same, otherwise the resulting set is not guaranteed to be a sigma-algebra, as shown in the counterexample salgencntex . (Contributed by Glauco Siliprandi, 17-Aug-2020) (Revised by Glauco Siliprandi, 1-Jan-2021)

Ref Expression
Assertion df-salgen SalGen = ( 𝑥 ∈ V ↦ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csalgen SalGen
1 vx 𝑥
2 cvv V
3 vs 𝑠
4 csalg SAlg
5 3 cv 𝑠
6 5 cuni 𝑠
7 1 cv 𝑥
8 7 cuni 𝑥
9 6 8 wceq 𝑠 = 𝑥
10 7 5 wss 𝑥𝑠
11 9 10 wa ( 𝑠 = 𝑥𝑥𝑠 )
12 11 3 4 crab { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠 ) }
13 12 cint { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠 ) }
14 1 2 13 cmpt ( 𝑥 ∈ V ↦ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠 ) } )
15 0 14 wceq SalGen = ( 𝑥 ∈ V ↦ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠 ) } )