Step |
Hyp |
Ref |
Expression |
1 |
|
salgencntex.a |
⊢ 𝐴 = ( 0 [,] 2 ) |
2 |
|
salgencntex.s |
⊢ 𝑆 = { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) } |
3 |
|
salgencntex.b |
⊢ 𝐵 = ( 0 [,] 1 ) |
4 |
|
salgencntex.t |
⊢ 𝑇 = 𝒫 𝐵 |
5 |
|
salgencntex.c |
⊢ 𝐶 = ( 𝑆 ∩ 𝑇 ) |
6 |
|
salgencntex.z |
⊢ 𝑍 = ∩ { 𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠 } |
7 |
|
saluni |
⊢ ( 𝑍 ∈ SAlg → ∪ 𝑍 ∈ 𝑍 ) |
8 |
|
ovex |
⊢ ( 0 [,] 1 ) ∈ V |
9 |
3 8
|
eqeltri |
⊢ 𝐵 ∈ V |
10 |
|
pwsal |
⊢ ( 𝐵 ∈ V → 𝒫 𝐵 ∈ SAlg ) |
11 |
9 10
|
ax-mp |
⊢ 𝒫 𝐵 ∈ SAlg |
12 |
4 11
|
eqeltri |
⊢ 𝑇 ∈ SAlg |
13 |
|
inss2 |
⊢ ( 𝑆 ∩ 𝑇 ) ⊆ 𝑇 |
14 |
5 13
|
eqsstri |
⊢ 𝐶 ⊆ 𝑇 |
15 |
12 14
|
pm3.2i |
⊢ ( 𝑇 ∈ SAlg ∧ 𝐶 ⊆ 𝑇 ) |
16 |
|
sseq2 |
⊢ ( 𝑠 = 𝑇 → ( 𝐶 ⊆ 𝑠 ↔ 𝐶 ⊆ 𝑇 ) ) |
17 |
16
|
elrab |
⊢ ( 𝑇 ∈ { 𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠 } ↔ ( 𝑇 ∈ SAlg ∧ 𝐶 ⊆ 𝑇 ) ) |
18 |
15 17
|
mpbir |
⊢ 𝑇 ∈ { 𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠 } |
19 |
|
intss1 |
⊢ ( 𝑇 ∈ { 𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠 } → ∩ { 𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠 } ⊆ 𝑇 ) |
20 |
18 19
|
ax-mp |
⊢ ∩ { 𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠 } ⊆ 𝑇 |
21 |
6 20
|
eqsstri |
⊢ 𝑍 ⊆ 𝑇 |
22 |
21
|
unissi |
⊢ ∪ 𝑍 ⊆ ∪ 𝑇 |
23 |
4
|
unieqi |
⊢ ∪ 𝑇 = ∪ 𝒫 𝐵 |
24 |
|
unipw |
⊢ ∪ 𝒫 𝐵 = 𝐵 |
25 |
23 24
|
eqtri |
⊢ ∪ 𝑇 = 𝐵 |
26 |
22 25
|
sseqtri |
⊢ ∪ 𝑍 ⊆ 𝐵 |
27 |
|
sseq2 |
⊢ ( 𝑠 = 𝑡 → ( 𝐶 ⊆ 𝑠 ↔ 𝐶 ⊆ 𝑡 ) ) |
28 |
27
|
elrab |
⊢ ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠 } ↔ ( 𝑡 ∈ SAlg ∧ 𝐶 ⊆ 𝑡 ) ) |
29 |
28
|
biimpi |
⊢ ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠 } → ( 𝑡 ∈ SAlg ∧ 𝐶 ⊆ 𝑡 ) ) |
30 |
29
|
simprd |
⊢ ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠 } → 𝐶 ⊆ 𝑡 ) |
31 |
30
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑡 ∈ { 𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠 } ) → 𝐶 ⊆ 𝑡 ) |
32 |
|
0red |
⊢ ( 𝑦 ∈ 𝐵 → 0 ∈ ℝ ) |
33 |
|
2re |
⊢ 2 ∈ ℝ |
34 |
33
|
a1i |
⊢ ( 𝑦 ∈ 𝐵 → 2 ∈ ℝ ) |
35 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
36 |
|
id |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐵 ) |
37 |
36 3
|
eleqtrdi |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( 0 [,] 1 ) ) |
38 |
35 37
|
sselid |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ℝ ) |
39 |
32
|
rexrd |
⊢ ( 𝑦 ∈ 𝐵 → 0 ∈ ℝ* ) |
40 |
|
1xr |
⊢ 1 ∈ ℝ* |
41 |
40
|
a1i |
⊢ ( 𝑦 ∈ 𝐵 → 1 ∈ ℝ* ) |
42 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → 0 ≤ 𝑦 ) |
43 |
39 41 37 42
|
syl3anc |
⊢ ( 𝑦 ∈ 𝐵 → 0 ≤ 𝑦 ) |
44 |
|
1re |
⊢ 1 ∈ ℝ |
45 |
44
|
a1i |
⊢ ( 𝑦 ∈ 𝐵 → 1 ∈ ℝ ) |
46 |
|
iccleub |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → 𝑦 ≤ 1 ) |
47 |
39 41 37 46
|
syl3anc |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ≤ 1 ) |
48 |
|
1le2 |
⊢ 1 ≤ 2 |
49 |
48
|
a1i |
⊢ ( 𝑦 ∈ 𝐵 → 1 ≤ 2 ) |
50 |
38 45 34 47 49
|
letrd |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ≤ 2 ) |
51 |
32 34 38 43 50
|
eliccd |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( 0 [,] 2 ) ) |
52 |
51 1
|
eleqtrrdi |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) |
53 |
|
snelpwi |
⊢ ( 𝑦 ∈ 𝐴 → { 𝑦 } ∈ 𝒫 𝐴 ) |
54 |
52 53
|
syl |
⊢ ( 𝑦 ∈ 𝐵 → { 𝑦 } ∈ 𝒫 𝐴 ) |
55 |
|
snfi |
⊢ { 𝑦 } ∈ Fin |
56 |
|
fict |
⊢ ( { 𝑦 } ∈ Fin → { 𝑦 } ≼ ω ) |
57 |
55 56
|
ax-mp |
⊢ { 𝑦 } ≼ ω |
58 |
57
|
a1i |
⊢ ( 𝑦 ∈ 𝐵 → { 𝑦 } ≼ ω ) |
59 |
|
orc |
⊢ ( { 𝑦 } ≼ ω → ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) |
60 |
58 59
|
syl |
⊢ ( 𝑦 ∈ 𝐵 → ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) |
61 |
54 60
|
jca |
⊢ ( 𝑦 ∈ 𝐵 → ( { 𝑦 } ∈ 𝒫 𝐴 ∧ ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) ) |
62 |
|
breq1 |
⊢ ( 𝑥 = { 𝑦 } → ( 𝑥 ≼ ω ↔ { 𝑦 } ≼ ω ) ) |
63 |
|
difeq2 |
⊢ ( 𝑥 = { 𝑦 } → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ { 𝑦 } ) ) |
64 |
63
|
breq1d |
⊢ ( 𝑥 = { 𝑦 } → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ↔ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) |
65 |
62 64
|
orbi12d |
⊢ ( 𝑥 = { 𝑦 } → ( ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) ↔ ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) ) |
66 |
65 2
|
elrab2 |
⊢ ( { 𝑦 } ∈ 𝑆 ↔ ( { 𝑦 } ∈ 𝒫 𝐴 ∧ ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) ) |
67 |
61 66
|
sylibr |
⊢ ( 𝑦 ∈ 𝐵 → { 𝑦 } ∈ 𝑆 ) |
68 |
|
snelpwi |
⊢ ( 𝑦 ∈ 𝐵 → { 𝑦 } ∈ 𝒫 𝐵 ) |
69 |
68 4
|
eleqtrrdi |
⊢ ( 𝑦 ∈ 𝐵 → { 𝑦 } ∈ 𝑇 ) |
70 |
67 69
|
elind |
⊢ ( 𝑦 ∈ 𝐵 → { 𝑦 } ∈ ( 𝑆 ∩ 𝑇 ) ) |
71 |
5
|
eqcomi |
⊢ ( 𝑆 ∩ 𝑇 ) = 𝐶 |
72 |
71
|
a1i |
⊢ ( 𝑦 ∈ 𝐵 → ( 𝑆 ∩ 𝑇 ) = 𝐶 ) |
73 |
70 72
|
eleqtrd |
⊢ ( 𝑦 ∈ 𝐵 → { 𝑦 } ∈ 𝐶 ) |
74 |
73
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑡 ∈ { 𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠 } ) → { 𝑦 } ∈ 𝐶 ) |
75 |
31 74
|
sseldd |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑡 ∈ { 𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠 } ) → { 𝑦 } ∈ 𝑡 ) |
76 |
75
|
ralrimiva |
⊢ ( 𝑦 ∈ 𝐵 → ∀ 𝑡 ∈ { 𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠 } { 𝑦 } ∈ 𝑡 ) |
77 |
|
snex |
⊢ { 𝑦 } ∈ V |
78 |
77
|
elint2 |
⊢ ( { 𝑦 } ∈ ∩ { 𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠 } ↔ ∀ 𝑡 ∈ { 𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠 } { 𝑦 } ∈ 𝑡 ) |
79 |
76 78
|
sylibr |
⊢ ( 𝑦 ∈ 𝐵 → { 𝑦 } ∈ ∩ { 𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠 } ) |
80 |
79 6
|
eleqtrrdi |
⊢ ( 𝑦 ∈ 𝐵 → { 𝑦 } ∈ 𝑍 ) |
81 |
|
snidg |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ { 𝑦 } ) |
82 |
|
eleq2 |
⊢ ( 𝑤 = { 𝑦 } → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ { 𝑦 } ) ) |
83 |
82
|
rspcev |
⊢ ( ( { 𝑦 } ∈ 𝑍 ∧ 𝑦 ∈ { 𝑦 } ) → ∃ 𝑤 ∈ 𝑍 𝑦 ∈ 𝑤 ) |
84 |
80 81 83
|
syl2anc |
⊢ ( 𝑦 ∈ 𝐵 → ∃ 𝑤 ∈ 𝑍 𝑦 ∈ 𝑤 ) |
85 |
|
eluni2 |
⊢ ( 𝑦 ∈ ∪ 𝑍 ↔ ∃ 𝑤 ∈ 𝑍 𝑦 ∈ 𝑤 ) |
86 |
84 85
|
sylibr |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ∪ 𝑍 ) |
87 |
86
|
rgen |
⊢ ∀ 𝑦 ∈ 𝐵 𝑦 ∈ ∪ 𝑍 |
88 |
|
dfss3 |
⊢ ( 𝐵 ⊆ ∪ 𝑍 ↔ ∀ 𝑦 ∈ 𝐵 𝑦 ∈ ∪ 𝑍 ) |
89 |
87 88
|
mpbir |
⊢ 𝐵 ⊆ ∪ 𝑍 |
90 |
26 89
|
eqssi |
⊢ ∪ 𝑍 = 𝐵 |
91 |
|
ovex |
⊢ ( 0 [,] 2 ) ∈ V |
92 |
1 91
|
eqeltri |
⊢ 𝐴 ∈ V |
93 |
92
|
a1i |
⊢ ( ⊤ → 𝐴 ∈ V ) |
94 |
93 2
|
salexct |
⊢ ( ⊤ → 𝑆 ∈ SAlg ) |
95 |
94
|
mptru |
⊢ 𝑆 ∈ SAlg |
96 |
|
inss1 |
⊢ ( 𝑆 ∩ 𝑇 ) ⊆ 𝑆 |
97 |
5 96
|
eqsstri |
⊢ 𝐶 ⊆ 𝑆 |
98 |
95 97
|
pm3.2i |
⊢ ( 𝑆 ∈ SAlg ∧ 𝐶 ⊆ 𝑆 ) |
99 |
|
sseq2 |
⊢ ( 𝑠 = 𝑆 → ( 𝐶 ⊆ 𝑠 ↔ 𝐶 ⊆ 𝑆 ) ) |
100 |
99
|
elrab |
⊢ ( 𝑆 ∈ { 𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠 } ↔ ( 𝑆 ∈ SAlg ∧ 𝐶 ⊆ 𝑆 ) ) |
101 |
98 100
|
mpbir |
⊢ 𝑆 ∈ { 𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠 } |
102 |
|
intss1 |
⊢ ( 𝑆 ∈ { 𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠 } → ∩ { 𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠 } ⊆ 𝑆 ) |
103 |
101 102
|
ax-mp |
⊢ ∩ { 𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠 } ⊆ 𝑆 |
104 |
6 103
|
eqsstri |
⊢ 𝑍 ⊆ 𝑆 |
105 |
104
|
sseli |
⊢ ( 𝐵 ∈ 𝑍 → 𝐵 ∈ 𝑆 ) |
106 |
1 2 3
|
salexct2 |
⊢ ¬ 𝐵 ∈ 𝑆 |
107 |
106
|
a1i |
⊢ ( 𝐵 ∈ 𝑍 → ¬ 𝐵 ∈ 𝑆 ) |
108 |
105 107
|
pm2.65i |
⊢ ¬ 𝐵 ∈ 𝑍 |
109 |
90 108
|
eqneltri |
⊢ ¬ ∪ 𝑍 ∈ 𝑍 |
110 |
109
|
a1i |
⊢ ( 𝑍 ∈ SAlg → ¬ ∪ 𝑍 ∈ 𝑍 ) |
111 |
7 110
|
pm2.65i |
⊢ ¬ 𝑍 ∈ SAlg |