Metamath Proof Explorer


Theorem salgencntex

Description: This counterexample shows that df-salgen needs to require that all containing sigma-algebra have the same base set. Otherwise, the intersection could lead to a set that is not a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses salgencntex.a 𝐴 = ( 0 [,] 2 )
salgencntex.s 𝑆 = { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑥 ≼ ω ∨ ( 𝐴𝑥 ) ≼ ω ) }
salgencntex.b 𝐵 = ( 0 [,] 1 )
salgencntex.t 𝑇 = 𝒫 𝐵
salgencntex.c 𝐶 = ( 𝑆𝑇 )
salgencntex.z 𝑍 = { 𝑠 ∈ SAlg ∣ 𝐶𝑠 }
Assertion salgencntex ¬ 𝑍 ∈ SAlg

Proof

Step Hyp Ref Expression
1 salgencntex.a 𝐴 = ( 0 [,] 2 )
2 salgencntex.s 𝑆 = { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑥 ≼ ω ∨ ( 𝐴𝑥 ) ≼ ω ) }
3 salgencntex.b 𝐵 = ( 0 [,] 1 )
4 salgencntex.t 𝑇 = 𝒫 𝐵
5 salgencntex.c 𝐶 = ( 𝑆𝑇 )
6 salgencntex.z 𝑍 = { 𝑠 ∈ SAlg ∣ 𝐶𝑠 }
7 saluni ( 𝑍 ∈ SAlg → 𝑍𝑍 )
8 ovex ( 0 [,] 1 ) ∈ V
9 3 8 eqeltri 𝐵 ∈ V
10 pwsal ( 𝐵 ∈ V → 𝒫 𝐵 ∈ SAlg )
11 9 10 ax-mp 𝒫 𝐵 ∈ SAlg
12 4 11 eqeltri 𝑇 ∈ SAlg
13 inss2 ( 𝑆𝑇 ) ⊆ 𝑇
14 5 13 eqsstri 𝐶𝑇
15 12 14 pm3.2i ( 𝑇 ∈ SAlg ∧ 𝐶𝑇 )
16 sseq2 ( 𝑠 = 𝑇 → ( 𝐶𝑠𝐶𝑇 ) )
17 16 elrab ( 𝑇 ∈ { 𝑠 ∈ SAlg ∣ 𝐶𝑠 } ↔ ( 𝑇 ∈ SAlg ∧ 𝐶𝑇 ) )
18 15 17 mpbir 𝑇 ∈ { 𝑠 ∈ SAlg ∣ 𝐶𝑠 }
19 intss1 ( 𝑇 ∈ { 𝑠 ∈ SAlg ∣ 𝐶𝑠 } → { 𝑠 ∈ SAlg ∣ 𝐶𝑠 } ⊆ 𝑇 )
20 18 19 ax-mp { 𝑠 ∈ SAlg ∣ 𝐶𝑠 } ⊆ 𝑇
21 6 20 eqsstri 𝑍𝑇
22 21 unissi 𝑍 𝑇
23 4 unieqi 𝑇 = 𝒫 𝐵
24 unipw 𝒫 𝐵 = 𝐵
25 23 24 eqtri 𝑇 = 𝐵
26 22 25 sseqtri 𝑍𝐵
27 sseq2 ( 𝑠 = 𝑡 → ( 𝐶𝑠𝐶𝑡 ) )
28 27 elrab ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ 𝐶𝑠 } ↔ ( 𝑡 ∈ SAlg ∧ 𝐶𝑡 ) )
29 28 biimpi ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ 𝐶𝑠 } → ( 𝑡 ∈ SAlg ∧ 𝐶𝑡 ) )
30 29 simprd ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ 𝐶𝑠 } → 𝐶𝑡 )
31 30 adantl ( ( 𝑦𝐵𝑡 ∈ { 𝑠 ∈ SAlg ∣ 𝐶𝑠 } ) → 𝐶𝑡 )
32 0red ( 𝑦𝐵 → 0 ∈ ℝ )
33 2re 2 ∈ ℝ
34 33 a1i ( 𝑦𝐵 → 2 ∈ ℝ )
35 unitssre ( 0 [,] 1 ) ⊆ ℝ
36 id ( 𝑦𝐵𝑦𝐵 )
37 36 3 eleqtrdi ( 𝑦𝐵𝑦 ∈ ( 0 [,] 1 ) )
38 35 37 sselid ( 𝑦𝐵𝑦 ∈ ℝ )
39 32 rexrd ( 𝑦𝐵 → 0 ∈ ℝ* )
40 1xr 1 ∈ ℝ*
41 40 a1i ( 𝑦𝐵 → 1 ∈ ℝ* )
42 iccgelb ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑦 ∈ ( 0 [,] 1 ) ) → 0 ≤ 𝑦 )
43 39 41 37 42 syl3anc ( 𝑦𝐵 → 0 ≤ 𝑦 )
44 1re 1 ∈ ℝ
45 44 a1i ( 𝑦𝐵 → 1 ∈ ℝ )
46 iccleub ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑦 ∈ ( 0 [,] 1 ) ) → 𝑦 ≤ 1 )
47 39 41 37 46 syl3anc ( 𝑦𝐵𝑦 ≤ 1 )
48 1le2 1 ≤ 2
49 48 a1i ( 𝑦𝐵 → 1 ≤ 2 )
50 38 45 34 47 49 letrd ( 𝑦𝐵𝑦 ≤ 2 )
51 32 34 38 43 50 eliccd ( 𝑦𝐵𝑦 ∈ ( 0 [,] 2 ) )
52 51 1 eleqtrrdi ( 𝑦𝐵𝑦𝐴 )
53 snelpwi ( 𝑦𝐴 → { 𝑦 } ∈ 𝒫 𝐴 )
54 52 53 syl ( 𝑦𝐵 → { 𝑦 } ∈ 𝒫 𝐴 )
55 snfi { 𝑦 } ∈ Fin
56 fict ( { 𝑦 } ∈ Fin → { 𝑦 } ≼ ω )
57 55 56 ax-mp { 𝑦 } ≼ ω
58 57 a1i ( 𝑦𝐵 → { 𝑦 } ≼ ω )
59 orc ( { 𝑦 } ≼ ω → ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) )
60 58 59 syl ( 𝑦𝐵 → ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) )
61 54 60 jca ( 𝑦𝐵 → ( { 𝑦 } ∈ 𝒫 𝐴 ∧ ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) )
62 breq1 ( 𝑥 = { 𝑦 } → ( 𝑥 ≼ ω ↔ { 𝑦 } ≼ ω ) )
63 difeq2 ( 𝑥 = { 𝑦 } → ( 𝐴𝑥 ) = ( 𝐴 ∖ { 𝑦 } ) )
64 63 breq1d ( 𝑥 = { 𝑦 } → ( ( 𝐴𝑥 ) ≼ ω ↔ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) )
65 62 64 orbi12d ( 𝑥 = { 𝑦 } → ( ( 𝑥 ≼ ω ∨ ( 𝐴𝑥 ) ≼ ω ) ↔ ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) )
66 65 2 elrab2 ( { 𝑦 } ∈ 𝑆 ↔ ( { 𝑦 } ∈ 𝒫 𝐴 ∧ ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) )
67 61 66 sylibr ( 𝑦𝐵 → { 𝑦 } ∈ 𝑆 )
68 snelpwi ( 𝑦𝐵 → { 𝑦 } ∈ 𝒫 𝐵 )
69 68 4 eleqtrrdi ( 𝑦𝐵 → { 𝑦 } ∈ 𝑇 )
70 67 69 elind ( 𝑦𝐵 → { 𝑦 } ∈ ( 𝑆𝑇 ) )
71 5 eqcomi ( 𝑆𝑇 ) = 𝐶
72 71 a1i ( 𝑦𝐵 → ( 𝑆𝑇 ) = 𝐶 )
73 70 72 eleqtrd ( 𝑦𝐵 → { 𝑦 } ∈ 𝐶 )
74 73 adantr ( ( 𝑦𝐵𝑡 ∈ { 𝑠 ∈ SAlg ∣ 𝐶𝑠 } ) → { 𝑦 } ∈ 𝐶 )
75 31 74 sseldd ( ( 𝑦𝐵𝑡 ∈ { 𝑠 ∈ SAlg ∣ 𝐶𝑠 } ) → { 𝑦 } ∈ 𝑡 )
76 75 ralrimiva ( 𝑦𝐵 → ∀ 𝑡 ∈ { 𝑠 ∈ SAlg ∣ 𝐶𝑠 } { 𝑦 } ∈ 𝑡 )
77 snex { 𝑦 } ∈ V
78 77 elint2 ( { 𝑦 } ∈ { 𝑠 ∈ SAlg ∣ 𝐶𝑠 } ↔ ∀ 𝑡 ∈ { 𝑠 ∈ SAlg ∣ 𝐶𝑠 } { 𝑦 } ∈ 𝑡 )
79 76 78 sylibr ( 𝑦𝐵 → { 𝑦 } ∈ { 𝑠 ∈ SAlg ∣ 𝐶𝑠 } )
80 79 6 eleqtrrdi ( 𝑦𝐵 → { 𝑦 } ∈ 𝑍 )
81 snidg ( 𝑦𝐵𝑦 ∈ { 𝑦 } )
82 eleq2 ( 𝑤 = { 𝑦 } → ( 𝑦𝑤𝑦 ∈ { 𝑦 } ) )
83 82 rspcev ( ( { 𝑦 } ∈ 𝑍𝑦 ∈ { 𝑦 } ) → ∃ 𝑤𝑍 𝑦𝑤 )
84 80 81 83 syl2anc ( 𝑦𝐵 → ∃ 𝑤𝑍 𝑦𝑤 )
85 eluni2 ( 𝑦 𝑍 ↔ ∃ 𝑤𝑍 𝑦𝑤 )
86 84 85 sylibr ( 𝑦𝐵𝑦 𝑍 )
87 86 rgen 𝑦𝐵 𝑦 𝑍
88 dfss3 ( 𝐵 𝑍 ↔ ∀ 𝑦𝐵 𝑦 𝑍 )
89 87 88 mpbir 𝐵 𝑍
90 26 89 eqssi 𝑍 = 𝐵
91 ovex ( 0 [,] 2 ) ∈ V
92 1 91 eqeltri 𝐴 ∈ V
93 92 a1i ( ⊤ → 𝐴 ∈ V )
94 93 2 salexct ( ⊤ → 𝑆 ∈ SAlg )
95 94 mptru 𝑆 ∈ SAlg
96 inss1 ( 𝑆𝑇 ) ⊆ 𝑆
97 5 96 eqsstri 𝐶𝑆
98 95 97 pm3.2i ( 𝑆 ∈ SAlg ∧ 𝐶𝑆 )
99 sseq2 ( 𝑠 = 𝑆 → ( 𝐶𝑠𝐶𝑆 ) )
100 99 elrab ( 𝑆 ∈ { 𝑠 ∈ SAlg ∣ 𝐶𝑠 } ↔ ( 𝑆 ∈ SAlg ∧ 𝐶𝑆 ) )
101 98 100 mpbir 𝑆 ∈ { 𝑠 ∈ SAlg ∣ 𝐶𝑠 }
102 intss1 ( 𝑆 ∈ { 𝑠 ∈ SAlg ∣ 𝐶𝑠 } → { 𝑠 ∈ SAlg ∣ 𝐶𝑠 } ⊆ 𝑆 )
103 101 102 ax-mp { 𝑠 ∈ SAlg ∣ 𝐶𝑠 } ⊆ 𝑆
104 6 103 eqsstri 𝑍𝑆
105 104 sseli ( 𝐵𝑍𝐵𝑆 )
106 1 2 3 salexct2 ¬ 𝐵𝑆
107 106 a1i ( 𝐵𝑍 → ¬ 𝐵𝑆 )
108 105 107 pm2.65i ¬ 𝐵𝑍
109 90 108 eqneltri ¬ 𝑍𝑍
110 109 a1i ( 𝑍 ∈ SAlg → ¬ 𝑍𝑍 )
111 7 110 pm2.65i ¬ 𝑍 ∈ SAlg