| Step | Hyp | Ref | Expression | 
						
							| 1 |  | salgencntex.a | ⊢ 𝐴  =  ( 0 [,] 2 ) | 
						
							| 2 |  | salgencntex.s | ⊢ 𝑆  =  { 𝑥  ∈  𝒫  𝐴  ∣  ( 𝑥  ≼  ω  ∨  ( 𝐴  ∖  𝑥 )  ≼  ω ) } | 
						
							| 3 |  | salgencntex.b | ⊢ 𝐵  =  ( 0 [,] 1 ) | 
						
							| 4 |  | salgencntex.t | ⊢ 𝑇  =  𝒫  𝐵 | 
						
							| 5 |  | salgencntex.c | ⊢ 𝐶  =  ( 𝑆  ∩  𝑇 ) | 
						
							| 6 |  | salgencntex.z | ⊢ 𝑍  =  ∩  { 𝑠  ∈  SAlg  ∣  𝐶  ⊆  𝑠 } | 
						
							| 7 |  | saluni | ⊢ ( 𝑍  ∈  SAlg  →  ∪  𝑍  ∈  𝑍 ) | 
						
							| 8 |  | ovex | ⊢ ( 0 [,] 1 )  ∈  V | 
						
							| 9 | 3 8 | eqeltri | ⊢ 𝐵  ∈  V | 
						
							| 10 |  | pwsal | ⊢ ( 𝐵  ∈  V  →  𝒫  𝐵  ∈  SAlg ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ 𝒫  𝐵  ∈  SAlg | 
						
							| 12 | 4 11 | eqeltri | ⊢ 𝑇  ∈  SAlg | 
						
							| 13 |  | inss2 | ⊢ ( 𝑆  ∩  𝑇 )  ⊆  𝑇 | 
						
							| 14 | 5 13 | eqsstri | ⊢ 𝐶  ⊆  𝑇 | 
						
							| 15 | 12 14 | pm3.2i | ⊢ ( 𝑇  ∈  SAlg  ∧  𝐶  ⊆  𝑇 ) | 
						
							| 16 |  | sseq2 | ⊢ ( 𝑠  =  𝑇  →  ( 𝐶  ⊆  𝑠  ↔  𝐶  ⊆  𝑇 ) ) | 
						
							| 17 | 16 | elrab | ⊢ ( 𝑇  ∈  { 𝑠  ∈  SAlg  ∣  𝐶  ⊆  𝑠 }  ↔  ( 𝑇  ∈  SAlg  ∧  𝐶  ⊆  𝑇 ) ) | 
						
							| 18 | 15 17 | mpbir | ⊢ 𝑇  ∈  { 𝑠  ∈  SAlg  ∣  𝐶  ⊆  𝑠 } | 
						
							| 19 |  | intss1 | ⊢ ( 𝑇  ∈  { 𝑠  ∈  SAlg  ∣  𝐶  ⊆  𝑠 }  →  ∩  { 𝑠  ∈  SAlg  ∣  𝐶  ⊆  𝑠 }  ⊆  𝑇 ) | 
						
							| 20 | 18 19 | ax-mp | ⊢ ∩  { 𝑠  ∈  SAlg  ∣  𝐶  ⊆  𝑠 }  ⊆  𝑇 | 
						
							| 21 | 6 20 | eqsstri | ⊢ 𝑍  ⊆  𝑇 | 
						
							| 22 | 21 | unissi | ⊢ ∪  𝑍  ⊆  ∪  𝑇 | 
						
							| 23 | 4 | unieqi | ⊢ ∪  𝑇  =  ∪  𝒫  𝐵 | 
						
							| 24 |  | unipw | ⊢ ∪  𝒫  𝐵  =  𝐵 | 
						
							| 25 | 23 24 | eqtri | ⊢ ∪  𝑇  =  𝐵 | 
						
							| 26 | 22 25 | sseqtri | ⊢ ∪  𝑍  ⊆  𝐵 | 
						
							| 27 |  | sseq2 | ⊢ ( 𝑠  =  𝑡  →  ( 𝐶  ⊆  𝑠  ↔  𝐶  ⊆  𝑡 ) ) | 
						
							| 28 | 27 | elrab | ⊢ ( 𝑡  ∈  { 𝑠  ∈  SAlg  ∣  𝐶  ⊆  𝑠 }  ↔  ( 𝑡  ∈  SAlg  ∧  𝐶  ⊆  𝑡 ) ) | 
						
							| 29 | 28 | biimpi | ⊢ ( 𝑡  ∈  { 𝑠  ∈  SAlg  ∣  𝐶  ⊆  𝑠 }  →  ( 𝑡  ∈  SAlg  ∧  𝐶  ⊆  𝑡 ) ) | 
						
							| 30 | 29 | simprd | ⊢ ( 𝑡  ∈  { 𝑠  ∈  SAlg  ∣  𝐶  ⊆  𝑠 }  →  𝐶  ⊆  𝑡 ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑡  ∈  { 𝑠  ∈  SAlg  ∣  𝐶  ⊆  𝑠 } )  →  𝐶  ⊆  𝑡 ) | 
						
							| 32 |  | 0red | ⊢ ( 𝑦  ∈  𝐵  →  0  ∈  ℝ ) | 
						
							| 33 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 34 | 33 | a1i | ⊢ ( 𝑦  ∈  𝐵  →  2  ∈  ℝ ) | 
						
							| 35 |  | unitssre | ⊢ ( 0 [,] 1 )  ⊆  ℝ | 
						
							| 36 |  | id | ⊢ ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐵 ) | 
						
							| 37 | 36 3 | eleqtrdi | ⊢ ( 𝑦  ∈  𝐵  →  𝑦  ∈  ( 0 [,] 1 ) ) | 
						
							| 38 | 35 37 | sselid | ⊢ ( 𝑦  ∈  𝐵  →  𝑦  ∈  ℝ ) | 
						
							| 39 | 32 | rexrd | ⊢ ( 𝑦  ∈  𝐵  →  0  ∈  ℝ* ) | 
						
							| 40 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 41 | 40 | a1i | ⊢ ( 𝑦  ∈  𝐵  →  1  ∈  ℝ* ) | 
						
							| 42 |  | iccgelb | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ*  ∧  𝑦  ∈  ( 0 [,] 1 ) )  →  0  ≤  𝑦 ) | 
						
							| 43 | 39 41 37 42 | syl3anc | ⊢ ( 𝑦  ∈  𝐵  →  0  ≤  𝑦 ) | 
						
							| 44 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 45 | 44 | a1i | ⊢ ( 𝑦  ∈  𝐵  →  1  ∈  ℝ ) | 
						
							| 46 |  | iccleub | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ*  ∧  𝑦  ∈  ( 0 [,] 1 ) )  →  𝑦  ≤  1 ) | 
						
							| 47 | 39 41 37 46 | syl3anc | ⊢ ( 𝑦  ∈  𝐵  →  𝑦  ≤  1 ) | 
						
							| 48 |  | 1le2 | ⊢ 1  ≤  2 | 
						
							| 49 | 48 | a1i | ⊢ ( 𝑦  ∈  𝐵  →  1  ≤  2 ) | 
						
							| 50 | 38 45 34 47 49 | letrd | ⊢ ( 𝑦  ∈  𝐵  →  𝑦  ≤  2 ) | 
						
							| 51 | 32 34 38 43 50 | eliccd | ⊢ ( 𝑦  ∈  𝐵  →  𝑦  ∈  ( 0 [,] 2 ) ) | 
						
							| 52 | 51 1 | eleqtrrdi | ⊢ ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐴 ) | 
						
							| 53 |  | snelpwi | ⊢ ( 𝑦  ∈  𝐴  →  { 𝑦 }  ∈  𝒫  𝐴 ) | 
						
							| 54 | 52 53 | syl | ⊢ ( 𝑦  ∈  𝐵  →  { 𝑦 }  ∈  𝒫  𝐴 ) | 
						
							| 55 |  | snfi | ⊢ { 𝑦 }  ∈  Fin | 
						
							| 56 |  | fict | ⊢ ( { 𝑦 }  ∈  Fin  →  { 𝑦 }  ≼  ω ) | 
						
							| 57 | 55 56 | ax-mp | ⊢ { 𝑦 }  ≼  ω | 
						
							| 58 | 57 | a1i | ⊢ ( 𝑦  ∈  𝐵  →  { 𝑦 }  ≼  ω ) | 
						
							| 59 |  | orc | ⊢ ( { 𝑦 }  ≼  ω  →  ( { 𝑦 }  ≼  ω  ∨  ( 𝐴  ∖  { 𝑦 } )  ≼  ω ) ) | 
						
							| 60 | 58 59 | syl | ⊢ ( 𝑦  ∈  𝐵  →  ( { 𝑦 }  ≼  ω  ∨  ( 𝐴  ∖  { 𝑦 } )  ≼  ω ) ) | 
						
							| 61 | 54 60 | jca | ⊢ ( 𝑦  ∈  𝐵  →  ( { 𝑦 }  ∈  𝒫  𝐴  ∧  ( { 𝑦 }  ≼  ω  ∨  ( 𝐴  ∖  { 𝑦 } )  ≼  ω ) ) ) | 
						
							| 62 |  | breq1 | ⊢ ( 𝑥  =  { 𝑦 }  →  ( 𝑥  ≼  ω  ↔  { 𝑦 }  ≼  ω ) ) | 
						
							| 63 |  | difeq2 | ⊢ ( 𝑥  =  { 𝑦 }  →  ( 𝐴  ∖  𝑥 )  =  ( 𝐴  ∖  { 𝑦 } ) ) | 
						
							| 64 | 63 | breq1d | ⊢ ( 𝑥  =  { 𝑦 }  →  ( ( 𝐴  ∖  𝑥 )  ≼  ω  ↔  ( 𝐴  ∖  { 𝑦 } )  ≼  ω ) ) | 
						
							| 65 | 62 64 | orbi12d | ⊢ ( 𝑥  =  { 𝑦 }  →  ( ( 𝑥  ≼  ω  ∨  ( 𝐴  ∖  𝑥 )  ≼  ω )  ↔  ( { 𝑦 }  ≼  ω  ∨  ( 𝐴  ∖  { 𝑦 } )  ≼  ω ) ) ) | 
						
							| 66 | 65 2 | elrab2 | ⊢ ( { 𝑦 }  ∈  𝑆  ↔  ( { 𝑦 }  ∈  𝒫  𝐴  ∧  ( { 𝑦 }  ≼  ω  ∨  ( 𝐴  ∖  { 𝑦 } )  ≼  ω ) ) ) | 
						
							| 67 | 61 66 | sylibr | ⊢ ( 𝑦  ∈  𝐵  →  { 𝑦 }  ∈  𝑆 ) | 
						
							| 68 |  | snelpwi | ⊢ ( 𝑦  ∈  𝐵  →  { 𝑦 }  ∈  𝒫  𝐵 ) | 
						
							| 69 | 68 4 | eleqtrrdi | ⊢ ( 𝑦  ∈  𝐵  →  { 𝑦 }  ∈  𝑇 ) | 
						
							| 70 | 67 69 | elind | ⊢ ( 𝑦  ∈  𝐵  →  { 𝑦 }  ∈  ( 𝑆  ∩  𝑇 ) ) | 
						
							| 71 | 5 | eqcomi | ⊢ ( 𝑆  ∩  𝑇 )  =  𝐶 | 
						
							| 72 | 71 | a1i | ⊢ ( 𝑦  ∈  𝐵  →  ( 𝑆  ∩  𝑇 )  =  𝐶 ) | 
						
							| 73 | 70 72 | eleqtrd | ⊢ ( 𝑦  ∈  𝐵  →  { 𝑦 }  ∈  𝐶 ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑡  ∈  { 𝑠  ∈  SAlg  ∣  𝐶  ⊆  𝑠 } )  →  { 𝑦 }  ∈  𝐶 ) | 
						
							| 75 | 31 74 | sseldd | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑡  ∈  { 𝑠  ∈  SAlg  ∣  𝐶  ⊆  𝑠 } )  →  { 𝑦 }  ∈  𝑡 ) | 
						
							| 76 | 75 | ralrimiva | ⊢ ( 𝑦  ∈  𝐵  →  ∀ 𝑡  ∈  { 𝑠  ∈  SAlg  ∣  𝐶  ⊆  𝑠 } { 𝑦 }  ∈  𝑡 ) | 
						
							| 77 |  | vsnex | ⊢ { 𝑦 }  ∈  V | 
						
							| 78 | 77 | elint2 | ⊢ ( { 𝑦 }  ∈  ∩  { 𝑠  ∈  SAlg  ∣  𝐶  ⊆  𝑠 }  ↔  ∀ 𝑡  ∈  { 𝑠  ∈  SAlg  ∣  𝐶  ⊆  𝑠 } { 𝑦 }  ∈  𝑡 ) | 
						
							| 79 | 76 78 | sylibr | ⊢ ( 𝑦  ∈  𝐵  →  { 𝑦 }  ∈  ∩  { 𝑠  ∈  SAlg  ∣  𝐶  ⊆  𝑠 } ) | 
						
							| 80 | 79 6 | eleqtrrdi | ⊢ ( 𝑦  ∈  𝐵  →  { 𝑦 }  ∈  𝑍 ) | 
						
							| 81 |  | snidg | ⊢ ( 𝑦  ∈  𝐵  →  𝑦  ∈  { 𝑦 } ) | 
						
							| 82 |  | eleq2 | ⊢ ( 𝑤  =  { 𝑦 }  →  ( 𝑦  ∈  𝑤  ↔  𝑦  ∈  { 𝑦 } ) ) | 
						
							| 83 | 82 | rspcev | ⊢ ( ( { 𝑦 }  ∈  𝑍  ∧  𝑦  ∈  { 𝑦 } )  →  ∃ 𝑤  ∈  𝑍 𝑦  ∈  𝑤 ) | 
						
							| 84 | 80 81 83 | syl2anc | ⊢ ( 𝑦  ∈  𝐵  →  ∃ 𝑤  ∈  𝑍 𝑦  ∈  𝑤 ) | 
						
							| 85 |  | eluni2 | ⊢ ( 𝑦  ∈  ∪  𝑍  ↔  ∃ 𝑤  ∈  𝑍 𝑦  ∈  𝑤 ) | 
						
							| 86 | 84 85 | sylibr | ⊢ ( 𝑦  ∈  𝐵  →  𝑦  ∈  ∪  𝑍 ) | 
						
							| 87 | 86 | rgen | ⊢ ∀ 𝑦  ∈  𝐵 𝑦  ∈  ∪  𝑍 | 
						
							| 88 |  | dfss3 | ⊢ ( 𝐵  ⊆  ∪  𝑍  ↔  ∀ 𝑦  ∈  𝐵 𝑦  ∈  ∪  𝑍 ) | 
						
							| 89 | 87 88 | mpbir | ⊢ 𝐵  ⊆  ∪  𝑍 | 
						
							| 90 | 26 89 | eqssi | ⊢ ∪  𝑍  =  𝐵 | 
						
							| 91 |  | ovex | ⊢ ( 0 [,] 2 )  ∈  V | 
						
							| 92 | 1 91 | eqeltri | ⊢ 𝐴  ∈  V | 
						
							| 93 | 92 | a1i | ⊢ ( ⊤  →  𝐴  ∈  V ) | 
						
							| 94 | 93 2 | salexct | ⊢ ( ⊤  →  𝑆  ∈  SAlg ) | 
						
							| 95 | 94 | mptru | ⊢ 𝑆  ∈  SAlg | 
						
							| 96 |  | inss1 | ⊢ ( 𝑆  ∩  𝑇 )  ⊆  𝑆 | 
						
							| 97 | 5 96 | eqsstri | ⊢ 𝐶  ⊆  𝑆 | 
						
							| 98 | 95 97 | pm3.2i | ⊢ ( 𝑆  ∈  SAlg  ∧  𝐶  ⊆  𝑆 ) | 
						
							| 99 |  | sseq2 | ⊢ ( 𝑠  =  𝑆  →  ( 𝐶  ⊆  𝑠  ↔  𝐶  ⊆  𝑆 ) ) | 
						
							| 100 | 99 | elrab | ⊢ ( 𝑆  ∈  { 𝑠  ∈  SAlg  ∣  𝐶  ⊆  𝑠 }  ↔  ( 𝑆  ∈  SAlg  ∧  𝐶  ⊆  𝑆 ) ) | 
						
							| 101 | 98 100 | mpbir | ⊢ 𝑆  ∈  { 𝑠  ∈  SAlg  ∣  𝐶  ⊆  𝑠 } | 
						
							| 102 |  | intss1 | ⊢ ( 𝑆  ∈  { 𝑠  ∈  SAlg  ∣  𝐶  ⊆  𝑠 }  →  ∩  { 𝑠  ∈  SAlg  ∣  𝐶  ⊆  𝑠 }  ⊆  𝑆 ) | 
						
							| 103 | 101 102 | ax-mp | ⊢ ∩  { 𝑠  ∈  SAlg  ∣  𝐶  ⊆  𝑠 }  ⊆  𝑆 | 
						
							| 104 | 6 103 | eqsstri | ⊢ 𝑍  ⊆  𝑆 | 
						
							| 105 | 104 | sseli | ⊢ ( 𝐵  ∈  𝑍  →  𝐵  ∈  𝑆 ) | 
						
							| 106 | 1 2 3 | salexct2 | ⊢ ¬  𝐵  ∈  𝑆 | 
						
							| 107 | 106 | a1i | ⊢ ( 𝐵  ∈  𝑍  →  ¬  𝐵  ∈  𝑆 ) | 
						
							| 108 | 105 107 | pm2.65i | ⊢ ¬  𝐵  ∈  𝑍 | 
						
							| 109 | 90 108 | eqneltri | ⊢ ¬  ∪  𝑍  ∈  𝑍 | 
						
							| 110 | 109 | a1i | ⊢ ( 𝑍  ∈  SAlg  →  ¬  ∪  𝑍  ∈  𝑍 ) | 
						
							| 111 | 7 110 | pm2.65i | ⊢ ¬  𝑍  ∈  SAlg |