| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0elpw | ⊢ ∅  ∈  𝒫  𝑋 | 
						
							| 2 | 1 | a1i | ⊢ ( 𝑋  ∈  𝑉  →  ∅  ∈  𝒫  𝑋 ) | 
						
							| 3 |  | unipw | ⊢ ∪  𝒫  𝑋  =  𝑋 | 
						
							| 4 | 3 | difeq1i | ⊢ ( ∪  𝒫  𝑋  ∖  𝑦 )  =  ( 𝑋  ∖  𝑦 ) | 
						
							| 5 | 4 | a1i | ⊢ ( 𝑋  ∈  𝑉  →  ( ∪  𝒫  𝑋  ∖  𝑦 )  =  ( 𝑋  ∖  𝑦 ) ) | 
						
							| 6 |  | difssd | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋  ∖  𝑦 )  ⊆  𝑋 ) | 
						
							| 7 |  | difexg | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋  ∖  𝑦 )  ∈  V ) | 
						
							| 8 |  | elpwg | ⊢ ( ( 𝑋  ∖  𝑦 )  ∈  V  →  ( ( 𝑋  ∖  𝑦 )  ∈  𝒫  𝑋  ↔  ( 𝑋  ∖  𝑦 )  ⊆  𝑋 ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝑋  ∈  𝑉  →  ( ( 𝑋  ∖  𝑦 )  ∈  𝒫  𝑋  ↔  ( 𝑋  ∖  𝑦 )  ⊆  𝑋 ) ) | 
						
							| 10 | 6 9 | mpbird | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋  ∖  𝑦 )  ∈  𝒫  𝑋 ) | 
						
							| 11 | 5 10 | eqeltrd | ⊢ ( 𝑋  ∈  𝑉  →  ( ∪  𝒫  𝑋  ∖  𝑦 )  ∈  𝒫  𝑋 ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  𝒫  𝑋 )  →  ( ∪  𝒫  𝑋  ∖  𝑦 )  ∈  𝒫  𝑋 ) | 
						
							| 13 | 12 | ralrimiva | ⊢ ( 𝑋  ∈  𝑉  →  ∀ 𝑦  ∈  𝒫  𝑋 ( ∪  𝒫  𝑋  ∖  𝑦 )  ∈  𝒫  𝑋 ) | 
						
							| 14 |  | elpwi | ⊢ ( 𝑦  ∈  𝒫  𝒫  𝑋  →  𝑦  ⊆  𝒫  𝑋 ) | 
						
							| 15 | 14 | unissd | ⊢ ( 𝑦  ∈  𝒫  𝒫  𝑋  →  ∪  𝑦  ⊆  ∪  𝒫  𝑋 ) | 
						
							| 16 | 15 3 | sseqtrdi | ⊢ ( 𝑦  ∈  𝒫  𝒫  𝑋  →  ∪  𝑦  ⊆  𝑋 ) | 
						
							| 17 |  | vuniex | ⊢ ∪  𝑦  ∈  V | 
						
							| 18 | 17 | a1i | ⊢ ( 𝑦  ∈  𝒫  𝒫  𝑋  →  ∪  𝑦  ∈  V ) | 
						
							| 19 |  | elpwg | ⊢ ( ∪  𝑦  ∈  V  →  ( ∪  𝑦  ∈  𝒫  𝑋  ↔  ∪  𝑦  ⊆  𝑋 ) ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝑦  ∈  𝒫  𝒫  𝑋  →  ( ∪  𝑦  ∈  𝒫  𝑋  ↔  ∪  𝑦  ⊆  𝑋 ) ) | 
						
							| 21 | 16 20 | mpbird | ⊢ ( 𝑦  ∈  𝒫  𝒫  𝑋  →  ∪  𝑦  ∈  𝒫  𝑋 ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  𝒫  𝒫  𝑋 )  →  ∪  𝑦  ∈  𝒫  𝑋 ) | 
						
							| 23 | 22 | a1d | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑦  ∈  𝒫  𝒫  𝑋 )  →  ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝒫  𝑋 ) ) | 
						
							| 24 | 23 | ralrimiva | ⊢ ( 𝑋  ∈  𝑉  →  ∀ 𝑦  ∈  𝒫  𝒫  𝑋 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝒫  𝑋 ) ) | 
						
							| 25 | 2 13 24 | 3jca | ⊢ ( 𝑋  ∈  𝑉  →  ( ∅  ∈  𝒫  𝑋  ∧  ∀ 𝑦  ∈  𝒫  𝑋 ( ∪  𝒫  𝑋  ∖  𝑦 )  ∈  𝒫  𝑋  ∧  ∀ 𝑦  ∈  𝒫  𝒫  𝑋 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝒫  𝑋 ) ) ) | 
						
							| 26 |  | pwexg | ⊢ ( 𝑋  ∈  𝑉  →  𝒫  𝑋  ∈  V ) | 
						
							| 27 |  | issal | ⊢ ( 𝒫  𝑋  ∈  V  →  ( 𝒫  𝑋  ∈  SAlg  ↔  ( ∅  ∈  𝒫  𝑋  ∧  ∀ 𝑦  ∈  𝒫  𝑋 ( ∪  𝒫  𝑋  ∖  𝑦 )  ∈  𝒫  𝑋  ∧  ∀ 𝑦  ∈  𝒫  𝒫  𝑋 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝒫  𝑋 ) ) ) ) | 
						
							| 28 | 26 27 | syl | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝒫  𝑋  ∈  SAlg  ↔  ( ∅  ∈  𝒫  𝑋  ∧  ∀ 𝑦  ∈  𝒫  𝑋 ( ∪  𝒫  𝑋  ∖  𝑦 )  ∈  𝒫  𝑋  ∧  ∀ 𝑦  ∈  𝒫  𝒫  𝑋 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝒫  𝑋 ) ) ) ) | 
						
							| 29 | 25 28 | mpbird | ⊢ ( 𝑋  ∈  𝑉  →  𝒫  𝑋  ∈  SAlg ) |