| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝑋 |
| 2 |
1
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → ∅ ∈ 𝒫 𝑋 ) |
| 3 |
|
unipw |
⊢ ∪ 𝒫 𝑋 = 𝑋 |
| 4 |
3
|
difeq1i |
⊢ ( ∪ 𝒫 𝑋 ∖ 𝑦 ) = ( 𝑋 ∖ 𝑦 ) |
| 5 |
4
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → ( ∪ 𝒫 𝑋 ∖ 𝑦 ) = ( 𝑋 ∖ 𝑦 ) ) |
| 6 |
|
difssd |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∖ 𝑦 ) ⊆ 𝑋 ) |
| 7 |
|
difexg |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∖ 𝑦 ) ∈ V ) |
| 8 |
|
elpwg |
⊢ ( ( 𝑋 ∖ 𝑦 ) ∈ V → ( ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∖ 𝑦 ) ⊆ 𝑋 ) ) |
| 9 |
7 8
|
syl |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∖ 𝑦 ) ⊆ 𝑋 ) ) |
| 10 |
6 9
|
mpbird |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ) |
| 11 |
5 10
|
eqeltrd |
⊢ ( 𝑋 ∈ 𝑉 → ( ∪ 𝒫 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( ∪ 𝒫 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ) |
| 13 |
12
|
ralrimiva |
⊢ ( 𝑋 ∈ 𝑉 → ∀ 𝑦 ∈ 𝒫 𝑋 ( ∪ 𝒫 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ) |
| 14 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝒫 𝑋 → 𝑦 ⊆ 𝒫 𝑋 ) |
| 15 |
14
|
unissd |
⊢ ( 𝑦 ∈ 𝒫 𝒫 𝑋 → ∪ 𝑦 ⊆ ∪ 𝒫 𝑋 ) |
| 16 |
15 3
|
sseqtrdi |
⊢ ( 𝑦 ∈ 𝒫 𝒫 𝑋 → ∪ 𝑦 ⊆ 𝑋 ) |
| 17 |
|
vuniex |
⊢ ∪ 𝑦 ∈ V |
| 18 |
17
|
a1i |
⊢ ( 𝑦 ∈ 𝒫 𝒫 𝑋 → ∪ 𝑦 ∈ V ) |
| 19 |
|
elpwg |
⊢ ( ∪ 𝑦 ∈ V → ( ∪ 𝑦 ∈ 𝒫 𝑋 ↔ ∪ 𝑦 ⊆ 𝑋 ) ) |
| 20 |
18 19
|
syl |
⊢ ( 𝑦 ∈ 𝒫 𝒫 𝑋 → ( ∪ 𝑦 ∈ 𝒫 𝑋 ↔ ∪ 𝑦 ⊆ 𝑋 ) ) |
| 21 |
16 20
|
mpbird |
⊢ ( 𝑦 ∈ 𝒫 𝒫 𝑋 → ∪ 𝑦 ∈ 𝒫 𝑋 ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋 ) → ∪ 𝑦 ∈ 𝒫 𝑋 ) |
| 23 |
22
|
a1d |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋 ) → ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝒫 𝑋 ) ) |
| 24 |
23
|
ralrimiva |
⊢ ( 𝑋 ∈ 𝑉 → ∀ 𝑦 ∈ 𝒫 𝒫 𝑋 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝒫 𝑋 ) ) |
| 25 |
2 13 24
|
3jca |
⊢ ( 𝑋 ∈ 𝑉 → ( ∅ ∈ 𝒫 𝑋 ∧ ∀ 𝑦 ∈ 𝒫 𝑋 ( ∪ 𝒫 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝑋 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝒫 𝑋 ) ) ) |
| 26 |
|
pwexg |
⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ V ) |
| 27 |
|
issal |
⊢ ( 𝒫 𝑋 ∈ V → ( 𝒫 𝑋 ∈ SAlg ↔ ( ∅ ∈ 𝒫 𝑋 ∧ ∀ 𝑦 ∈ 𝒫 𝑋 ( ∪ 𝒫 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝑋 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝒫 𝑋 ) ) ) ) |
| 28 |
26 27
|
syl |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝒫 𝑋 ∈ SAlg ↔ ( ∅ ∈ 𝒫 𝑋 ∧ ∀ 𝑦 ∈ 𝒫 𝑋 ( ∪ 𝒫 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝑋 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝒫 𝑋 ) ) ) ) |
| 29 |
25 28
|
mpbird |
⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ SAlg ) |