Metamath Proof Explorer


Theorem pwsal

Description: The power set of a given set is a sigma-algebra (the so called discrete sigma-algebra). (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion pwsal ( 𝑋𝑉 → 𝒫 𝑋 ∈ SAlg )

Proof

Step Hyp Ref Expression
1 0elpw ∅ ∈ 𝒫 𝑋
2 1 a1i ( 𝑋𝑉 → ∅ ∈ 𝒫 𝑋 )
3 unipw 𝒫 𝑋 = 𝑋
4 3 difeq1i ( 𝒫 𝑋𝑦 ) = ( 𝑋𝑦 )
5 4 a1i ( 𝑋𝑉 → ( 𝒫 𝑋𝑦 ) = ( 𝑋𝑦 ) )
6 difssd ( 𝑋𝑉 → ( 𝑋𝑦 ) ⊆ 𝑋 )
7 difexg ( 𝑋𝑉 → ( 𝑋𝑦 ) ∈ V )
8 elpwg ( ( 𝑋𝑦 ) ∈ V → ( ( 𝑋𝑦 ) ∈ 𝒫 𝑋 ↔ ( 𝑋𝑦 ) ⊆ 𝑋 ) )
9 7 8 syl ( 𝑋𝑉 → ( ( 𝑋𝑦 ) ∈ 𝒫 𝑋 ↔ ( 𝑋𝑦 ) ⊆ 𝑋 ) )
10 6 9 mpbird ( 𝑋𝑉 → ( 𝑋𝑦 ) ∈ 𝒫 𝑋 )
11 5 10 eqeltrd ( 𝑋𝑉 → ( 𝒫 𝑋𝑦 ) ∈ 𝒫 𝑋 )
12 11 adantr ( ( 𝑋𝑉𝑦 ∈ 𝒫 𝑋 ) → ( 𝒫 𝑋𝑦 ) ∈ 𝒫 𝑋 )
13 12 ralrimiva ( 𝑋𝑉 → ∀ 𝑦 ∈ 𝒫 𝑋 ( 𝒫 𝑋𝑦 ) ∈ 𝒫 𝑋 )
14 elpwi ( 𝑦 ∈ 𝒫 𝒫 𝑋𝑦 ⊆ 𝒫 𝑋 )
15 14 unissd ( 𝑦 ∈ 𝒫 𝒫 𝑋 𝑦 𝒫 𝑋 )
16 15 3 sseqtrdi ( 𝑦 ∈ 𝒫 𝒫 𝑋 𝑦𝑋 )
17 vuniex 𝑦 ∈ V
18 17 a1i ( 𝑦 ∈ 𝒫 𝒫 𝑋 𝑦 ∈ V )
19 elpwg ( 𝑦 ∈ V → ( 𝑦 ∈ 𝒫 𝑋 𝑦𝑋 ) )
20 18 19 syl ( 𝑦 ∈ 𝒫 𝒫 𝑋 → ( 𝑦 ∈ 𝒫 𝑋 𝑦𝑋 ) )
21 16 20 mpbird ( 𝑦 ∈ 𝒫 𝒫 𝑋 𝑦 ∈ 𝒫 𝑋 )
22 21 adantl ( ( 𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋 ) → 𝑦 ∈ 𝒫 𝑋 )
23 22 a1d ( ( 𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋 ) → ( 𝑦 ≼ ω → 𝑦 ∈ 𝒫 𝑋 ) )
24 23 ralrimiva ( 𝑋𝑉 → ∀ 𝑦 ∈ 𝒫 𝒫 𝑋 ( 𝑦 ≼ ω → 𝑦 ∈ 𝒫 𝑋 ) )
25 2 13 24 3jca ( 𝑋𝑉 → ( ∅ ∈ 𝒫 𝑋 ∧ ∀ 𝑦 ∈ 𝒫 𝑋 ( 𝒫 𝑋𝑦 ) ∈ 𝒫 𝑋 ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝑋 ( 𝑦 ≼ ω → 𝑦 ∈ 𝒫 𝑋 ) ) )
26 pwexg ( 𝑋𝑉 → 𝒫 𝑋 ∈ V )
27 issal ( 𝒫 𝑋 ∈ V → ( 𝒫 𝑋 ∈ SAlg ↔ ( ∅ ∈ 𝒫 𝑋 ∧ ∀ 𝑦 ∈ 𝒫 𝑋 ( 𝒫 𝑋𝑦 ) ∈ 𝒫 𝑋 ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝑋 ( 𝑦 ≼ ω → 𝑦 ∈ 𝒫 𝑋 ) ) ) )
28 26 27 syl ( 𝑋𝑉 → ( 𝒫 𝑋 ∈ SAlg ↔ ( ∅ ∈ 𝒫 𝑋 ∧ ∀ 𝑦 ∈ 𝒫 𝑋 ( 𝒫 𝑋𝑦 ) ∈ 𝒫 𝑋 ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝑋 ( 𝑦 ≼ ω → 𝑦 ∈ 𝒫 𝑋 ) ) ) )
29 25 28 mpbird ( 𝑋𝑉 → 𝒫 𝑋 ∈ SAlg )